12/12/2019

An Intro to Text Analysis
for Social Scientists

Patrick van Kessel, Senior Data Scientist
Pew Research Center

12/12/19 AAPOR Webinar

Agenda

e Basic principles: how to convert text into quantitative data
e Overview of common methods: a map of useful analysis tools
e Demo: text analysis in action

12/12/2019

The role of text in social research

The role of text in social research
Why text?

e Free of assumptions
e Potential for richer insights relative to closed-format responses
e If organic, then data collection costs are often negligible

12/12/2019

The role of text in social research
Where do I find it?

e Open-ended surveys / focus groups / transcripts / interviews

e Social media data (tweets, FB posts, etc.)
e Long-form content (articles, notes, logs, etc.)

The role of text in social research
What makes it challenging?

e Messy

o “Data spaghetti” with little or no structure
e Sparse

o Low information-to-data ratio (lots of hay, few needles)
e Often organic (rather than designed)

o Can be naturally generated by people and processes
o Often without a research use in mind

12/12/2019

Data selection and preparation

Data selection and preparation

e Know your objective and subject matter (if needed find subject matter expert)
e Get familiar with the data
e Don’t make assumptions - know your data, quirks and all

12/12/2019

Data selection and preparation
Text Acquisition and Preprepation

Select relevant data (text corpus) L\\%
e Content ~—
e Metadata fas's

Prepare the input file
e Determine unit of analysis
e Process text to get one document

per unit of analysis

Image credit: http://www.nickmilton.com/2016/12/garbage-lessons-in-garbage-knowledge-out.html

(Pre-)Processing
Turning text into data

12/12/2019

Turning text into data

E Stemming .
sV n o= T
=)
= Preliminary Tokenization Advanced Visualization
— formatting analytics
Data sources .
Stopword
removal

[and other basic text processing operations]

Image credit: https://www.softwareadvice.com/resources/what-is-text-analytics/

Turning text into data

e How do we sift through text and produce insight?
e Might first try searching for keywords
e How many times is “analysis” mentioned?

Raw Documents

Text analysis is fun

| enjoy analyzing text data

Data science often involves text analytics

12/12/2019

Turning text into data

e How do we sift through text and produce insight?
e Might first try searching for keywords
e How many times is “analysis” mentioned?

We missed this one

Raw Documents

Text analysis is f

| enjoy analyzing text data And this one too

Data science often involves text analytics

Turning text into data

e Variations of words can have the same meaning but look completely different
to a computer

Raw Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

12/12/2019

Turning text into data
Regular Expressions

e A more sophisticated solution: regular expressions
e Syntax for defining string (text) patterns

Raw Documents

Text analysis is fun

| enjoy analyzing text data

Data science often involves text analytics

Turning text into data
Regular Expressions

IEI regularexpressions
e Can use to search text or extract

specific chunks N

. Start of line + ([A-Za-z0-9-]+)
° Example use cases: \A Start of string + (\d{1,2}V\d{1,2}\V\d{4})
o Extracting dates s End of line + ([™\s]+(?=\.Gpolgifpna)\\2)
. Rk \Z End of string + (~[1-91{1}$]|~[1-4]{1}[0-9]{1}¢
o Finding URLs \b Word boundary + (#2([A-Fa-f0-9]){3}(([A-Fa-f0-9])
o Identlfymg names/entities \B Not word boundary + ((?=.*\d)(?=.*[a-z])(?=.%[A-2]).4
\< Start of word
https://regexio1.com/ > EFdTh
. (\w+@[a-zA-Z_]+7?\.[2-zA-2]{2,6
http://www.regexlib.com/ O<UAN>TN2)
\c Control character These patterns are intendec
\s White space Please use with caution and
\s Not white space

Image credit: https://www.smashingmagazine.com/2009/06/essential-guide-to-regular-expressions-tools-tutorials-and-resources/

12/12/2019

Turning text into data
Regular Expressions

\banaly[a-z]+\b

Raw Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

Turning text into data
Regular Expressions

Regular expressions can be extremely powerful...

...and terrifyingly complex:
URLS: ((https?:W(www\.)?)?[-a-2A-Z0-9@:%. _\+~#=}{2,4006)\.[a-2}{2,6)\b([-a-zA-Z0-9@:% _\+.~#?&//=]"))
DOMAINS: (?:http[s]2\:W)2(2:www(?:s2)\.) (WA \-J+)(2:[W](2:.+))?
MONEY: \$([0-9{1,3}(?:(?:\,[0-9){3})+)?(?:\.[0-9]{1,2})?)\s

12/12/2019

Turning text into data
Pre-processing

Great, but we can’t write patterns for everything
Words are messy and have a lot of variation

We need to collapse semantically

We need to clean / pre-process

Raw Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

Turning text into data
Pre-processing

e Common first steps:
o Spell check / correct
o Remove punctuation / expand contractions

can’t -> cannot
they’re -> they_are
doesn’t -> does_not

Raw Documents Processed Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

10

12/12/2019

Turning text into data
Pre-processing

e Now to collapse words with the same meaning
e We do this with stemming or lemmatization
e Break words down to their roots

Raw Documents Processed Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

Turning text into data
Pre-processing

e Stemming is more conservative
e There are many different stemmers
e Here’s the Porter stemmer (1979)

Raw Documents Processed Documents

Text analysis is fun Text analysi is fun

| enjoy analyzing text data | enjoy analyz text data

Data science often involves text analytics Data scienc often involv text analyt

11

12/12/2019

Turning text into data
Pre-processing

e Stemming is more conservative
e There are many different stemmers
e Here’s the Porter stemmer (1979)

Raw Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

Processed Documents
Text analysi is fun
| enjoy analyz text data

Data scienc often involv text analyt

Turning text into data
Pre-processing

e The Lancaster stemmer (1990) is newer and more aggressive

e Truncates words a LOT

Raw Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

Processed Documents
text analys is fun
| enjoy analys text dat

dat sci oft involv text analys

12

12/12/2019

Turning text into data
Pre-processing

e Lemmatization uses linguistic relationships and parts of speech to collapse

words down to their root form - so you get actual words (“lemma”), not stems

e WordNet Lemmatizer

Raw Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

Processed Documents
text analysis is fun
| enjoy analyze text data

data science often involve text analytics

Turning text into data
Pre-processing

e Picking the right method depends on how much you want to preserve nuance

or collapse meaning
e We'll stick with Lancaster

Raw Documents
Text analysis is fun
| enjoy analyzing text data

Data science often involves text analytics

Processed Documents
text analys is fun
| enjoy analys text dat

dat sci oft involv text analys

13

12/12/2019

Turning text into data
Pre-processing

e Finally, we need to remove words that don’t hold meaning themselves
e These are called “stopwords”
e Can expand standard stopword lists with custom words

Raw Documents Processed Documents
Text analysis is fun text analys fun

| enjoy analyzing text data enjoy analys text dat

Data science often involves text analytics dat sci oft involv text analys

Turning text into data
Pre-processing

e A word of caution: there aren’t any universal rules for making pre-
processing decisions

e Do what makes sense for your data - but be cautious of the researcher degrees
of freedom involved

e See:
o Denny and Spirling, 2016. Assessing the Consequences of Text Pre-processing Decisions”

o Denny and Spirling, 2018. “Text Preprocessing for Unsupervised Learning: Why It Matters,
When It Misleads, and What to Do About It”

14

12/12/2019

Turning text into data
Tokenization

Now we need to tokenize

Break words apart according to certain rules

Usually breaks on whitespace and punctuation

What'’s left are called “tokens”

Single tokens or pairs of two or more tokens are called “ngrams”

Turning text into data
Tokenization

e We can express the presence of each “ngram” as a column
e This is often called a “term frequency matrix”
e Here are unigrams

text analys fun enjoy dat sci oft involv

1 1 1

1 1 1 1

1 1 1 1 1 1

15

12/12/2019

Turning text into data
Tokenization

e We can express the presence of each “ngram” as a column

e This is often called a “term frequency matrix”

e And here are bigrams

text
analys

analys
fun

enjoy
analys

analys
text

text dat

dat sci

sci oft

oft
involv

1

1

Turning text into data
Tokenization

e If we want to characterize the whole corpus, we can just look at the most
frequent words

e Here’s the “term frequency matrix”:

fun

enjoy

1

sci

oft

involv

16

12/12/2019

Turning text into data
TF-IDF

e But what if we want to distinguish documents from each other?
e We know these documents are about text analysis
e What makes them unique?

Image credit: https://medium.com/@imamun/creating-a-tf-idf-in-python-e43f05e4d424

Turning text into data
TF-IDF

e Divide word frequencies by the number of documents they appear in
e Down-weight words that are common; log-scale emphasizes unique words
e Several variants that add smoothing

N
wi,jztfi’jxlog (E)

tf-idf = tf x idf (1)
L
Idf(t) = logﬁ +1 (2) tf, = number of occurrences of i in j

d

= number of documents containing i
N = total number of documents

Image credit: https:/sites.temple.edu/tudsc/2017/03/30/measuring-similarity-between-texts-in-python/tfidf-equations/
Image credit: https://medium.com/@imamun/creating-a-tf-idf-in-python-e43f05e4d424

17

12/12/2019

Turning text into data
TF-IDF

e The overall distribution of words is still largely preserved
e But now we’re emphasizing what makes each document unique

text analys fun enjoy dat sci oft involv
1 1 2.1

1 1 2.1 1.4

1 1 1.4 2.1 2.1 2.1

3 3 21 21 2.8 21 21 21

Turning text into data
TF-IDF

e The overall distribution of words is still largely preserved
e But now we’re emphasizing what makes each document unique
e Within each document, we're now highlighting distinctive terms

text analys fun enjoy dat sci oft involv

2.1 1.4
1.4 2.1 2.1 2.1
21 2.8 21 21 21

18

12/12/2019

Turning text into data
TF-IDF

e TF-IDF is an extremely common and useful way to convert text into useful
quantitative features

It’s often all you need
But there are other, more complex ways to quantify text

Turning words into numbers
Part-of-Speech Tagging

e Sometimes you care about how a word is used /S\
e Can use pre-trained part-of-speech (POS) taggers i /P\
e Can also help with things like negation Adf NV P

o “Happy” vs. “NOT happy” Fr!uit fIi(Ls m!e Dt{\N

a banana

>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something',6 'NN'),

I >>> text = word_tokenize("And now for something completely different")
('completely', 'RB'), ('different', 'JJ')]

Image credit: http:/nltk.sourceforge.net/doc/en/ch03.html
Image credit: https://www.nltk.org/book 1ed/ch05.html

19

12/12/2019

Turning words into numbers
Named Entity Extraction

e Might also be interested in people, places, organizations, etc.
e Like POS taggers, named entity extractors use trained models

B ceo FRMIBEOK Introduces 2 New, Larger
iPhones;Smart Watch At Sliieitine I

Event X

Person Organisation Location

Figure 1: An example of NER application on an example text

Image credit: http://inspiratron.org/blog/2019/04/15/building-named-entity-recognizer-ner-using-conditional-random-fields-crf/

Turning words into numbers
Word Embeddings

e Other methods can quantify words not by frequency, but by their relation

e Word2vec uses a sliding window to read words and learn their
relationships; each word gets a vector in N-dimensional space

e Pretrained model: https://code.google.com/archive/p/word2vec/

i _—_\\
Italy ‘—_____‘__muﬂu
erman Rose

walked Resiin

Vietnem —————— panoi
swimming China Beijing

Male-Female Verb tense Country-Capital
Image credit: https://www.tensorflow.org/tutorials/text/word _embeddings

20

12/12/2019

Analysis
Finding patterns in text data

Finding patterns in text data

Two types of approaches:

e Unsupervised NLP: automated, extracts structure from the data
o Clustering
o Topic modeling
o Mutual information
e Supervised NLP: requires training data, learns to predict labels and classes
o Classification
o Regression

21

12/12/2019

Finding patterns in text data

Unsupervised methods

Collocation / phrase detection

e Simple way to get a quick
look at common themes

e Bigrams are a form of
“collocation” — a more
general term for words that
occur together

import nltk, re

from nltk.collocations import *

bigram_measures = nltk.collocations.BigramAssocMeasures()
tokens = nltk.corpus.genesis.words('english-web.txt')
tokens = [re.sub(r'\W', '', t) for t in tokens]

finder = BigramCollocationFinder.from_words(tokens)
ignored_words = nltk.corpus.stopwords.words('english')
finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in
ignored_words)

scored = finder.score_ngrams(bigram_measures.raw_freq)
sorted(bigram for bigram, score in scored)[:18]

[(u'Abel’', u'Mizraim'),
(u'Abel', u'also'),
(u'Abimelech', u'called'),
(u'Abimelech', u'charged'),
(u'Abimelech', u'king'),
(u'Abimelech', u'rose'),
(u'Abimelech', u'said'),
(u'Abimelech', u'took'),
(u'Abimelech', u'went'),
(u'Abraham', u'answered')]

Code modified from: https://www.nltk.org/howto/collocations.html

Finding patterns in text data

Unsupervised methods

Co-occurrence matrices

e We can also find words that
occur in the same documents
together (not just next to
each other)

able absolutely acid actual actually add

able 0 12 4 3 34 25
absolutely 12 0 9 6 26 21
acid 4 9 0 1 28 23
actual 3 6 1 0 6 1
actually 34 26 28 16 0 53

5 rows x 1026 columns

from sklearn.feature extraction.text import CountVectorizer

count_vectorizer = CountVectorizer(max_df=1.0, min_df=50)
counts = count_vectorizer.fit_transform(sample['Text'])
ngrams = count_vectorizer.get feature names()

cooccurs = (counts.T * counts)

cooccurs. setdiag(0)

rows, scanned = [], []
for index, row in pd.DataFrame(cooccurs.todense()).iterrows():
for j, val in enumerate(row):
if ngrams{j] not in scanned and val >= 10:
rows.append({
"pair": (ngrams{index], ngrams[j]), "count": val
H
scanned.append (ngrams[index])
pd.DataFrame (rows).sort_values(“count”, ascending=False)[:10]
pair count
36253 (cat, food) 3307
43697 (coffee, cup) 3236
62660 (dog, food) 3083
85935 (good, taste) 2321
44291 (coffee, taste) 2256
78780 (flavor, taste) 2103
43802 (coffee, flavor) 2094
63126 (dog, treat) 2031
100054 (just, taste) 2003

137548 (laste,tea) 1984

22

12/12/2019

Finding patterns in text data
Unsupervised methods

e Might want to compare documents (or words) to one another

e Possible applications
o Spelling correction Figure 1. Deduplication reduces the amount of stored data.
o Document deduplication (&
o Measure similarity of language
m Politicians’ speeches
m Movie reviews
m Product descriptions

Image credit: https://pibytes.wordpress.com/2013/02/02/deduplication-internals-part-1

/

Finding patterns in text data
Unsupervised methods

Levenshtein distance

e Compute number of steps needed to tntention_
turn a word/document into another i il T
etention .
e Can express as a ratio (percent of o & oip i Tigsn “_‘"”f_;""’“' bn
<+—insertu
word/document that needs to exenutlon, bstiuenbye
. . . execution
change) to measure similarity Pais o Fiasdion 12 Sxecaiion

Image credit: http://web.stanford.edu/~jurafsky/sIp3/2.pdf

23

12/12/2019

Finding patterns in text data
Unsupervised methods

Cosine similarity
e Compute the “angle” between two word vectors
e TF-IDF: axes are the weighted frequencies for
each word
e Word2Vec: axes are the learned dimensions
from the model

Image credit: https://www.machinelearningplus.com/nlp/cosine-similarity/

Finding patterns in text data
Unsupervised methods

Clustering
e Algorithms that use word vectors (TF-IDF,
Word2Vec, etc.) to identify structural
groupings between observations (words,
documents)
K-Means is a very commonly used one

Image credit: http://mnemstudio.org/clustering-k-means-introduction.htm

24

12/12/2019

Finding patterns in text data
Unsupervised methods

Hierarchical/agglomerative clustering
e Start with all observations, and use a
rule to pair them up, and repeat until
there’s only one group left

Image credit: https://scrnaseg-course.cog.sanger.ac.uk/website/biological-analysis.html
Image credit: https://rpkgs.datanovia.com/factoextra/reference/fviz_dend.html

Finding patterns in text data
Unsupervised methods

-

Network analysis
e C(Can also get creative
e After all, we're just working
with columns and numbers
e Example: link words together
by their strongest correlations

Image credit: https://www.linkedin.com/i n/galr\ck—vanfkessell

25

12/12/2019

Finding patterns in text data

Unsupervised methods

Pointwise mutual information

e Based on information theory

e Compares conditional and joint
probabilities to measure the
likelihood of a word occurring
with a category/outcome, beyond
random chance

Image credit: https://www.people-press.org/2017/02/23/partisan-language-in-congressional-outreach/

Words that distinguish indignant disagreement
among Republicans

5 words most distinctive of Republican press releases or
hat contain indignant disagreement, in rank
ise mutual information

Fac
order by point

ook posts

o president

® executive action

+ » american people
o obamacare
» administration
s veto
° execulive “President” is the word
® immigration that most reliably
» overreach distinguishes indignant
s constitution disagreement from
© immigrant ather statements by
o democrat Republicans. It appears
® power in 77% of statements
s illegal that express
o repeal indignation, and only
s supreme 16% of those that do
® constitutional not, for a difference of
& supreme court 2%,
» court
= failed
= iran
® american
s gun
i nuclear deal
» action

PEW RESEARCH CENTER

Finding patterns in text data

Unsupervised methods

Topic modeling
e Algorithms that characterize
documents in terms of topics
(groups of words)
e Find topics that best fit the
data

MONEY 3

PROG PRESIDENT

GOV ELEMENTARY

CONG HAITI
The William Randolph Hearst | will give & o Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act
every bit as important as our traditional areas of in health, medical education
and the social Hearst Randolph A. Hearst said Monday in

the Lincoln Center's share will be I for its new which

will young artists and new The Metropolitan Opera Co. and
New York Philharmonic will each. The Juilliard School, where music and
the performing ants are taught, will get ‘The Hearst | a leading supporter
of the Lincoln Center Consolidated Corporate will make its usual §

“Arts” Budgets' “Children”

NEW MILLION CHILDREN SCHOOL

FILM TAX WOM STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE YEARS TEACHERS
FAMILIES HIGH
WORK PUBLIC

STATE

donation, too.

Image credit: http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf|

26

12/12/2019

Finding patterns in text data
Supervised methods

Often we want to categorize documents

Unsupervised methods can help

But often we need to read and label them ourselves

Classification models can take labeled data and learn to make predictions

Finding patterns in text data
Supervised methods

Steps:

Label a sample of documents

Break your sample into two sets: a training sample and a test sample
Train a model on the training sample

Evaluate it on the test sample

Apply it to the full set of documents to make predictions

27

12/12/2019

Finding patterns in text data
Supervised methods
e First you need to develop a codebook
e Codebook: set of rules for labeling and categorizing documents
e The best codebooks have clear rules for hard cases, and lots of examples
e Categories should be MECE: mutually exclusive and collectively exhaustive

Hover over each prompt to view detailed explanations of each question, and click to view specific examples and pointers. It is very important that you follow the instructions carefully.

Does the post mention any of the following groups or institutions (NOT THE AUTHOR), and if so,

Author: Bernie Sanders does it express any support and/or opposition?

Party; Democratic Party
State: Vermont Opposes / Angry or
Date: March 30, 2016 (Barack Obama was President) e i SupportefAg Disagrees Insulting?
Note: the above info is only for context, the actual post is below. Please use all of the content below to make

your decisions: (sxcept for words contained in URLs/links) Donald Trump, his administration, or his campaign

Barack Obama or his administration

Facebook post by Bernie Sanders on March 30, Hillary Clinton or her campaign

2016 Federal agencies

Message: Bernie Sanders:

Senator from Vermont? Republicans, 'conservatives', or conservative values
Does not take money from super PACs? | " or 1 val

Not for sale? Democrats, 'liberals’, or liberal values

Wants to overturn Citizens United?

Thinks education and health care should be a right?

Democratic Socialist?

Doesn't want people to eat cat food? POLITICAL ACTION: Does the post invite the reader to vote, volunteer, call or send messages, sign a petition, attend an
event/rally/protest, or make & donation?

ENGAGE: Does the post encourage the reader to like, share, comment on, read, listen to, or watch something?

Thanks Sarah!
ELECTION-RELATED: Does the post mention specific elections, campaigns, or candidates?
Title: Sarah Silverman

LOCAL REFERENCE: Does the post mention a place, group, individualis), or event in the politician's state or district?

Story: Bernie Sanders shared Sarah Silverman's video.
Description: Friendos! | made this vid about why |'m voting #BERNIE. Hope u eat it up.

Notes

Needs Review / Uncodeable

28

12/12/2019

Finding patterns in text data

Supervised methods

Democrats, 'liberals', or liberal values

Democratic politician(s) (EXCEPT Obama and Clinton) if
their party or ideology is mentioned. Also includes the party SHES
itself, and the 'liberal’ or ‘progressive’ ideology more
generally. Does NOT include specific politicians UNLESS
the text associates them with the Democratic party or liberal

ideclogy.
LOCAL REFERENCE: Does the post mention a place, group, inc

, vol

What to Look For

Yes

« Any Democratic politician ONLY IF their
party affiliation o liberal iieology is
specifically mentioned

+ The Democratic Party, DNC

« Progressives or the Progressive Caucus
+ Democratic candidates for office

Examples

“We must not settie for four mons years of the
status quo in Washington, and Hillary Clinton
parsonifies that status quo.*

“The Obama Administration lied to the American
people.”

“Democrat Hillary Clinton. who reoresented New

Democrats, ‘liberals’, or liberal values

No

» Mentions of specific polticians if their
party affiliation or political ideclogy is
unciear

= Mentions of party leaders like Chuck
Schumer or prominent candidates like
Hillary Clinton and Bernie Sanders - If the
post doesn't mention their poiitical
affifiation

NOMENTION - because It does not
explicitlyiciearty link ‘the status quo’ or Hilary
Clinton’ 10 the Demacratic party o kberal
Ideology.

NOMENTION - because it does not descride the
Obama administration as Democrats or IDerls.

MENTION - because t uses the word Democrat

Finding patterns in text data

Supervised methods

e Need to validate the codebook by measuring interrater reliability
e Makes sure your measures are consistent, objective, and reproducible

e Multiple people code the same document

obsewer 1

Image credit: https://socialresearchmethods.net/kb/reltypes.php

obhject or
phenomenon

ohserver 2

29

12/12/2019

Finding patterns in text data
Supervised methods

e Various metrics to test whether their agreement is high enough
o Krippendorf’s alpha
o Cohen’s kappa

e Can also compare coders against a gold standard, if available

Values Interpretation

Smaller than 0.00 Poor Agreement

0.00 to 0.20 Slight Agreement

0.21 to 0.40 Fair Agreement

0.41 to 0.60 Moderate Agreement

0.61 to 0.80 Substantial Agreement
0.81 to 1.00 Almost Perfect Agreement

Image credit: https://www.researchgate.net/figure/Interpretation-of-Cohens-Kappa-Values_tbl2 302869046

Finding patterns in text data
Supervised methods

Mechanical Turk can be a great way to code a lot of documents
Have 5+ Turkers code a large sample of documents

Collapse them together with a rule

Code a subset in-house, and compute reliability

amazonmechanical turk

ntetiiger

Image credit: https:/machmachines.com/make-some-extra-cash-with-amazon-mechanical-turk060515/

30

12/12/2019

Finding patterns in text data
Supervised methods

e After coding, split your sample into two sets (~80/20)
o One for training, one for testing

e We do this to check for (and avoid) overfitting

Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting — too
explain the good to be true)

variance)

Image credit: https:/medium.com/ml-research-lab/under-fitting-over-fitting-and-its-solution-dc6 19134250

Finding patterns in text data
Supervised methods

e Next step is called feature extraction or feature selection

e Need to extract “features” from the text
o TF-IDF
o Word2Vec vectors

e Can also utilize metadata, if potentially useful

31

12/12/2019

Finding patterns in text data
Supervised methods

e Select a classification algorithm O O
e Common choice for text data are :
support vector machines (SVMs) 0
e Similar to regression, SVMs find the line 1
that best separates two or more groups },
e Can also use non-linear “kernels” for . /Maximﬁm~_
. . . . ¥ margin
better fits (radial basis function, etc.) O W B
e XGBoost is a newer and very promising ‘ Xy
algorithm
Image credit: https:/towardsdatascience.com/support-vector-machine-vs-logistic-regression-94cc2975433f
relevant elements
. . . false negatives true negatives
Finding patterns in text data .

Supervised methods

e Time to evaluate performance
e Lots of different metrics, depending on
what you care about

e Often we care about precision/recall
o Precision: did you pick out mostly needles or
mostly hay?
o Recall: how many needles did you miss?
e Other metrics:
o Matthew’s correlation coefficient
o Brier score
o Overall accuracy

selected elements

Recall = ———

Precision =

Image credit: https:/en.wikipedia.org/wiki/Precision_and_recall

32

12/12/2019

Finding patterns in text data
Supervised methods

e Doing just one split leaves a lot up to chance

e To bootstrap a better estimate of the model’s performance, it’s best to use K-
fold cross-validation

e Splits your data into train/test sets multiple times and averages the
performance metrics

e Ensures that you didn’t just get lucky (or unlucky)

Finding patterns in text data
Supervised methods

e Model not working well?
You probably need to tune your parameters
You can use a grid search to test out different combinations of model
parameters and feature extraction methods

e Many software packages can automatically help you pick the best
combination to maximize your model’s performance

33

12/12/2019

Finding patterns in text data
Supervised methods

e Suggested design:
o Large training sample, coded by Turkers
Small evaluation sample, coded by Turkers and in-house experts
Compute IRR between Turk and experts
Train model on training sample, use 5-fold cross-validation
Apply model to evaluation sample, compare results against in-house coders and Turkers

O O O O

Finding patterns in text data
Supervised methods

e Some (but not all) models produce probabilities along with their
classifications
Ideally you fit the model using your preferred scoring metric/function
But you can also use post-hoc probability thresholds to adjust your model’s
predictions

34

12/12/2019

Tools and Resources

Open-source tools

»
=, stackoverflow
e Python
o NLTK, scikit-learn, pandas, numpy, scipy, gensim, spacy, etctw
e R

o https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
e Java

o Stanford Core NLP + many other useful libraries
https://nlp.stanford.edu/software/

Image credit: https:/stackoverflow.com/

35

12/12/2019

Commercial tools
CIOnIel SR e B e)
G Dkoonies [HOotons I mequencss @ Edadien | T Cooccunences | [IC0KIN I KepworddnContint <2 Cbssiicaoen L
fhoptons By Dencrogram | B Mapoing 7 Unk anatviss T Prowimity Pt T Statistiks
Yo 5] el pdommntrie <[@ Q R : mhWd
e Cloud-based NLP Wk = e G
O Amazon Comprehend e

o Google Cloud Natural Language
o IBM Watson NLU

* Software W I (repmeny. v (e
INCOME P
o SPSS Text Modeler ssreses = N
. S S S PP PSS
o Provalis WordStat — LS PSS
S 4/ O jey (HaQ
MILLIONS
BILLION -
Eﬂu&i .
: : O the 3407 Dutzon [0 fing phiases. ﬁ

Image credit: https://provalisresearch.com/products/content-analysis-software/|

Time for a demo!

https://bit.ly/2riCOUG

Full link: https://colab.research.google.com/github/patrickvankessel /AAPOR-
Text-Analysis-2019/blob/master/Tutorial.ipynb
GitHub repo: https://github.com/patrickvankessel/AAPOR-Text-Analysis-2019

Feel free to reach out:
pvankessel@pewresearch.org
patrickvankessel@gmail.com

Special thanks to Michael Jugovich for help putting these materials together for previous workshops

36

12/12/2019

20719 AAPOR Text Analytics Tutorial

Patrick van Kessel

Senior Data Scientist, Pew Research Center

These materials are adapted from workshops | did in 2018 and 2019 for NYAAPOR,
the World Bank, and IBM, with a lot of help from an old colleague of mine, Michael
Jugovich (now at IBM). You can access a GitHub repository containing this notebook
and the data sample here: https://github.com/patrickvankessel/AAPOR-Text-Analysis-
2019

Loading in the data

We'll use a sample from the Kaggle Amazon Fine Food Reviews dataset. The full
dataset can be found here: https:/www.kaggle.com/snap/amazon-fine-food-reviews

[] import pandas as pd

[] sample = pd.read_csv("https://raw.githubusercontent.com/patrickvanke

[1 print(len(sample))

> 10000

37

12/12/2019

Examine the data

Run the cell below a few times, let's take a look at our text and see what it looks like.
Always take a look at your raw data.

[] sample.sample(1l0)[' 'Text'].values

[> 1 roasted varieties provide some sort of "extra" punch of flavor for h
ibout how awful it tastes and how much it's an acquired taste. I boug
item again!',
isn't. So whenever I have soup or whatever, I give him one of these.
: spicy enough to satisfy my husband, and just right for me.',
rotein to help curb hunger! Perfect go-to snack, and I\'ve also had th
lays when we work overtime. I have to say they do work, some days we s
: Also available in several sizes. This one is perfect for pocket or g
.ke some dog treats for small dogs!
I love how you can see the oa
»rder. '],

Preprocess the text (clean it up!)

| don't know about you, but | noticed some junk in our data - HTML and URLs. Let's
clear that out first. We'll also take this opportunity to lemmatize the words - to do that,
we'll install NLTK's WordNet library.

[1 import nltk
nltk.download('wordnet')

[[nltk _data] Downloading package wordnet to /root/nltk data...
[nltk_data] Package wordnet is already up-to-datel!
True

38

12/12/2019

import re
from nltk.stem import WordNetLemmatizer

Initialize a lemmatizer
lemmatizer = WordNetLemmatizer()

def clean_text(text):
First we'll use regular expressions to strip out links and HTV

text = re.sub(r'http[a-zA-20-9\&\?\=\?2\/\:\.]+\b', ' ', text)
text = re.sub(r'\<["\<\>]+\>', ' ', text)

Next, let's clear out all punctuation and replace it with whit
text = re.sub(r'\w+', ' ', text)

And clear out numbers

text = re.sub(r'[0-9]+', ' ', text)

And then lowercase

text = text.lower()

This isn't going to be perfect - ideally we expand contractior
And also deal with spelling corrections

But this will work well enough for now

Next, let's split on whitespace and then lemmatize each token
tokens = text.split()

tokens = [lemmatizer.lemmatize(x) for x in tokens]

text = " ".join(tokens)

return text

sample['Text'] = sample['Text'].map(clean_text)

Let's see what our data look like now that we've processed the text

[] sample.sample(10)['Text'].values

[> array(['i bought the whirley pop stovetop popcorn popper several mont
'i called upon a panel of two expert feline food tester assist
'so far my three male kitty have loved all the wellness wet fc
'moderate size packaging and not too sweet like other small ju
'they are by far the best flavor they really do taste like a t
'ima big fan of the carbs fat and protein balance of these ¢
'i have been making almond milk for about month and it ha take
'marley one love organic coffee pod are targeted at hip people
'so i have a dietitian now who s helping me lose another pounc
'i place order on june but this snack expire on sep i order at

dtype=cbject)

39

12/12/2019

TF-IDF Vectorization (Feature Extraction)

Just to be safe, let's add some additional words to a standard list of English stop
words.

[1] from sklearn.feature_ extraction import stop_words as sklearn_stop_wc

Grab standard English stopwords
stop_words = set(sklearn_stop_words.ENGLISH_STOP_WORDS)

And add in some of our own ("like" is really common and doesn't te

stop_words = stop_words.union(set([
llwwwll ; n http LU} - "n https " v "br n - LU} amazon" - n href " A
Illikeﬂ ; Iljustll ;

1))

Wa", lrha!!’

Okay, now let's tokenize our text and turn it into numbers

[1 from sklearn.feature_extraction.text import TfidfVectorizer, CountVe

tfidf vectorizer = TfidfVectorizer(
max_df=0.9, # Remove any words that appear in more than 90% of c
min_df=5, # Remove words that appear in fewer than 5 document
ngram_range=(1l, 1), # Only extract unigrams
stop_words=stop_words, # Remove stopwords
max_features=2500 # Grab the 2500 most common words (based on ak

)

tfidf = tfidf_vectorizer.fit transform(sample['Text'])

ngrams = tfidf vectorizer.get_ feature_ names()

[1 tfidf

[» <10000x2500 sparse matrix of type '<class 'numpy.floaté4'>'
with 245835 stored elements in Compressed Sparse Row format>

40

12/12/2019

Because words are really big, by default we work with sparse matrices. We can
expand the sparse matrix with .todense() and compute sums like a normal
dataframe. Let's check out the top 20 words.

[] ngram df = pd.DataFrame(tfidf.todense(), columns=ngrams)
ngram_df.sum().sort_values(ascending=False)[:20]

C» coffee 316.980063
good 308.366277
taste 306.032427
great 296.119454
tea 286.896549
love 283.353920
product 281.596502
flavor 278.327891
food 213.044387
dog 205.873217
really 178.868613
price 175.593576
time 165.726609
make 165.491621
cup 165.306249
buy 163.445115
best 162.054263
bag 154.881833
ve 151.040409
don 145.061858

dtype: float64

We can also explore word co-occurrences - the words that most frequently appear
together in the same documents

[] count_ vectorizer = CountVectorizer(
max_df=.9,
min_d£=50,
stop_words=stop_words
)
counts = count_vectorizer.fit transform(sample['Text'])
ngrams = count_vectorizer.get feature_names()
cooccurs = (counts.T * counts)
cooccurs.setdiag(0)
cooccurs = pd.DataFrame(cooccurs.todense(), index=ngrams, columns=n¢
coocecurs.head()

B able absolutely acid actual actually add added addict
able 0 12 4 3 34 25 18
absolutely 12 0 9 6 26 21 14
acid 4 9 0 1 28 23 10
actual 3 6 1 0 16 1 9
actually 34 26 28 16 0 &3 50

5 rows x 1026 columns

41

12/12/2019

[1] rows, scanned = [], []
for wordl, row in cooccurs.iterrows():
for word2 in row.keys():
if word2 not in scanned and row[word2] >= 100:
rows.append({
"pair": (wordl, word2), "count": row[word2]

}

scanned.append (wordl)

[] sorted(rows, key=lambda x: x["count"], reverse=True)[:25]

> [{'count': 3307, 'pair': ('cat', 'food')},
{'count': 3236, 'pair': ('coffee', 'cup')},
{'count': 3093, 'pair': ('dog', 'food')},
{'count': 2321, 'pair': ('good', 'taste')},
{'count': 2256, 'pair': ('coffee', 'taste')},
{'count': 2103, 'pair': ('flavor', 'taste')},
{'count': 2094, 'pair': ('coffee', 'flavor')},
{'count': 2031, 'pair': ('dog', 'treat')},
{'count': 1984, 'pair': ('taste', 'tea')},
{'count': 1962, 'pair': ('coffee', 'good')},
{'count': 1859, 'pair': ('flavor', 'good')},
{'count': 1659, 'pair': ('eat', 'food')},
{'count': 1619, 'pair': ('flavor', 'tea')},
{'count': 1592, 'pair': ('food', 'product')},
{'count': 1580, 'pair': ('product', 'taste')},
{'count': 1553, 'pair': ('coffee', 'pod')},
{'count': 1553, 'pair': ('green', 'tea')},

Classification

Let's go back to the TF-IDF matrix and use it to do some classification

[] from sklearn.feature extraction.text import TfidfVectorizer, CountVe

tfidf_ vectorizer = TfidfVectorizer(
max_df=0.9, # Remove any words that appear in more than 90% of ¢
min_df=5, # Remove words that appear in fewer than 5 document
ngram_range=(1, 1), # Only extract unigrams
stop_words=stop_words, # Remove stopwords
max_features=2500 # Grab the 2500 most common words (based on ak

)

tfidf = tfidf vectorizer.fit transform(sample['Text'])

ngrams = tfidf vectorizer.get_feature_names()

Let's make an outcome variable. How about we try to predict 5-star reviews, and then
maybe helpfulness?

[] sample['good score'] = sample['Score'].map(lambda x: 1 if x == 5 els
sample['was_helpful'] = ((sample['HelpfulnessNumerator'] / sample['F

42

12/12/2019

[] column_to_predict = 'good_ score'

[1] from sklearn.model_selection import StratifiedKFold
from sklearn import svm
from sklearn import metrics

results = []
kfolds = StratifiedKFold(n_splits=5)

We just created an object that'll split the data into fifths, and then iterate over it five

times, holding out one-fifth each time for testing. Let's do that now. Each "fold"

contains an index for training rows, and one for testing rows. For each fold, we'll train

a basic linear Support Vector Machine, and evaluate its performance.

for i, fold in enumerate(kfolds.split(tfidf, sample[column_to_predic

train, test = fold
print("Running new fold, {} training cases, {} testing cases".fc

clf = svm.LinearSVC(
max_iter=1000,
penalty='12",
class_weight='balanced',
loss='squared_hinge'

We picked some decent starting parameters, but you can try out
http://scikit-learn.org/stable/modules/generated/sklearn.svm.I
If you're ambitious - check out the Scikit-Learn documentatior
http://scikit-learn.org/stable/supervised learning.html

XGBoost is one of my favorites, and there's an Scikit-Learn wr
https://machinelearningmastery.com/develop-first-xgboost-model

I o3k % % %k~

training_text = tfidf[train]
training_outcomes = sample[column_to_predict].loc[train]
clf.fit(training_text, training_outcomes) # Train the classifier

43

12/12/2019

test_text = tfidf[test]
test_outcomes = sample[column_to_predict].loc[test]
predictions = clf.predict(test_text) # Get predictions for the t

precision, recall, fscore, support = metrics.precision_recall_fs
test_outcomes, # Compare the predictions against the true ou
predictions

)

results.append({
"fold"s i,
"outcome": 0,
"precision": precision[0],
"recall": recall[0],
"fscore": fscore[0],
"support": support[0]

Hi)

results.append({
"fold": i,
"outcome": 1,
"precision": precision[1],
"recall": recall[l],
"fscore": fscore[l],
"support”: support[l]

})

results = pd.DataFrame(results)

[> Running new fold, B000 training cases, 2000 testing cases
Running new fold, 8000 training cases, 2000 testing cases
Running new fold, 8000 training cases, 2000 testing cases
Running new fold, 8000 training cases, 2000 testing cases
Running new fold, 8000 training cases, 2000 testing cases

How'd we do?

[1 print(results.groupby("outcome").mean()[[' 'precision', 'recall']])
print(results.groupby("outcome").std()[['precision’', 'recall']])

[precision recall
outcome

0 0.641014 0.698769

1 0.817090 0.774626

precision recall
outcome

0 0.008326 0.020460

1 0.009987 0.005897

44

12/12/2019

Now we know that our model is pretty stable and reasonably performant, we can fit

and transform the full dataset.

[

[

clf.fit(tfidf, sample[column_to_predict])

print(metrics.classification_report(sample[column to_ predict].loc[te
print(metrics.confusion_matrix(sample[column_to_predict].loc[test],

precision recall fl-score support

0.64 0.72 0.68 731

1 0.83 0.77 0.80 1269

accuracy 0.75 2000

macro avg 0.74 0.75 0.74 2000

weighted avg 0.76 0.75 0.75 2000
[[528 203]
[293 976]]

And now we can see what the most predictive features are.

import numpy as np

ngram _coefs = sorted(zip(ngrams, clf.coef [0]), key=lambda x: x[1],

ngram _coefs[:10]

[("highly', 3.1013089738143287),
('best', 2.444740644553053),
('love', 2.306617070446386),
('perfect', 2.2929056338458307),
('favorite', 2.1200027087198525),
('wonderful', 2.006322948279272),
('cancer', 1.9431169727387974),
('fabulous', 1.8950394468562675),
('satisfied', 1.8690450683854933),
('addicted', 1.8094483299768616)]

45

12/12/2019

What happens if you change the outcome column to "was_helpful" and re-run it again?
Can you think of ways to improve this? Add more stopwords? Include bigrams in
addition to unigrams?

Topic Modeling

[] from sklearn.decomposition import NMF, LatentDirichletAllocation

[] def print top words(model, feature names, n_top_words):
for topic_idx, topic in enumerate(model.components_):
print("Topic #{}: {}".format(
topic_idx,
", ".join([feature_names[i] for i in topic.argsort()[:-r

))

46

12/12/2019

Let's find some topics. We'll check out non-negative matrix factorization (NMF) first.

[] nmf = NMF(n_components=10, random_state=42, alpha=.1, 1l _ratio=.5).f
Try out different numbers of topics (change n_components)
Documentation: http://scikit-learn.org/stable/modules/generated/sk
print("\nTopics in NMF model:")
print_top_words(nmf, ngrams, 10)

Topics

in

Topic #0:
Topic #1:
Topic #2:
Topic #3:
Topic #4:
Topic #5:
Topic #6:
Topic #7:
Topic #8:
Topic #9:

NMF model:

flavor, taste, sugar, ve, really, make, water, tried, don,
coffee, cup, strong, roast, bold, flavor, blend, keurig, de
tea, green, bag, drink, cup, iced, stash, black, taste, ea:
dog, treat, love, food, chew, bone, small, size, teeth, toy
cat, food, eat, dry, wellness, canned, chicken, ingredient,
product, store, price, order, buy, local, grocery, shippinc
great, love, snack, price, deal, taste, healthy, recommend,
chocolate, bar, dark, snack, nut, peanut, candy, protein, s
chip, bag, salt, potato, kettle, snack, vinegar, salty, fl:
good, really, price, taste, pretty, quality, tasting, quite

LDA is an other popular topic modeling technique

[1 lda =

LatentDirichletAllocation(n_components=10, random_state=42).fi
Documentation: http://scikit-learn.org/stable/modules/generated/sk
doc_topic_prior (alpha) - lower alpha means documents will be comg
topic_word_prior (beta) - lower beta means topics will be composec
print("\nTopics in LDA model:")
print_top_words(lda, ngrams, 10)

Topics in LDA model:

Topic
Topic
Topic
Topic
Topic
Topic
Topic
Topic
Topic
Topic

#0:
#1:
#2:
#3:
#4:
#51
#6:
#7:
#8:
#9:

coffee, cup, flavor, taste, drink, good, strong, great, roc
taste, bar, sugar, good, great, flavor, chocolate, product,
sauce, chip, salt, great, pasta, flavor, soup, good, cheese
chocolate, great, love, good, cereal, snack, box, cider, cu
tea, popcorn, taste, flavor, good, bag, drink, green, chai,
dog, treat, love, chew, teeth, toy, bone, size, training, ¢
product, price, arrived, gift, order, great, store, good, i
sleep, product, night, help, container, calm, great, link,
food, cat, dog, product, love, eat, good, year, bag, time

store, baby, love, product, great, price, time, buy, year,

47

12/12/2019

We can use the topic models the same way we did our classifier - everything in Scikit-
Learn follows the same fit/transform paradigm. So, let's get the topics for our
documents.

[] doc_topics = pd.DataFrame(lda.transform(tfidf))

[] doc_topics.head()

G 0 1 2 3 4 5 6
0 0.024099 0.024098 0.783103 0.024103 0.024096 0.024099 0.024098 0.024°
1 0750107 0.027767 0.027766 0.027764 0.027766 0.027765 0.027768 0.027;
0.016939 0.016949 0.016949 0.016937 0.815528 0.016946 0.016941 0.016¢
0.023150 0.023149 0.023147 0.023146 0.791670 0.023147 0.023147 0.023-

S wWwN

0.021649 0.021662 0.021655 0.021648 0.021648 0.021651 0.021647 0.021¢

Next we use Pandas to join the topics with the original sample dataframe
[] sample with_topics = pd.concat([sample, doc_topics], axis=1)
Let's look for patterns by running some means and correlations

[] topic_columns = [col for col in sample with_ topics.columns if col.st
sample with topics.groupby('"good score").mean()[topic_columns]
B topic_0 topic_1l topic_2 topic_3 topic_4 topic_5 topi
good_score
0 0.183903 0.226292 0.065056 0.041901 0.076930 0.058601 0.07

1 0.142316 0.226311 0.087173 0.047796 0.090577 0.068197 0.09:

48

12/12/2019

[

]

for topic in topic_column_names:
print("{}: {}".format(topic, sample with_ topics[topic].corr(samg

topic_0:
topic_1:
topic_2:
topic_3:
topic_4:
topic_5:
topic_6:
topic_7:
topic_8:
topic_9:

-0.025292235465098012
0.012046757693743665
0.06959235818628244
0.023446401876468924
0.03599689524129321
0.03409134227342527
0.04691101261547623
-0.001684816652652065
-0.13859039591384575
0.019007709950536102

Here's an example of a linear regression

[1

[

from sklearn import datasets, linear model
from sklearn.metrics import mean squared_error, r2_score

training data = sample with_ topics[topic_column_names[:-1]]
We're leaving a column out to avoid multicollinearity

regression = linear model.LinearRegression()

Train the model using the training sets

regression.fit(training data, sample with_ topics['Score'])

coefficients = regression.coef_

for topic, coef in zip(topic_column_names[:-1], coefficients):
print("{}: {}".format(topic, coef))

topic_0: -0.21269382796846162
topic_1l: -0.0843114794912539
topic_2: 0.3907048768291855
topic_3: 0.10179168229468046
topic_4: 0.10070443473499552
topic_5: 0.1935251748886604
topic_6: 0.1836870262014428
topic_7: -0.21131708369325589
topic_8: -0.7277794219956407

49

12/12/2019

Sadly Scikit-Learn doesn't make it easy to get p-values or a regression report like you'd
normally expect of something like R or Stata. Scikit-Learn is more about prediction
than statistical analysis; for the latter, we can use Statsmodels.

[35] import statsmodels.api as sm

training_data = sm.add_constant(training_ data)
regression

print(results.summary())

= sm.OLS(sample_with_topics['Sceore'], training data)
regression.fit()

OLS Regression Results

Dep. Variable: Score R-squared:
Model: OLS Adj. R-squared:
Method: Least Squares F-statistic:
Date: Mon, 09 Dec 2019 Prob (F-statistic):
Time: 17:42:27 Log-Likelihood:
No. Observations: 10000 AIC:
Df Residuals: 9990 BIC:
Df Model: 9
Covariance Type: nonrobust

coef std err t P>|t| [0.025
const 4.2597 0.071 59.682 0.000 4.120
topic_0 -0.2127 0.085 -2.506 0.012 -0.379
topic_1 -0.0843 0.081 -1.035 0.301 -0.244
topic_2 0.3907 0.105 3.723 0.000 0.185
topic_3 0.1018 0.134 0.758 0.448 -0.161
topic_4 0.1007 0.098 1.025 0.306 -0.092
topic_5 0.1935 0.109 1.768 0.077 -0.021
topic_6 0.1837 0.102 1.802 0.072 -0.016
topic_7 -0.2113 0.175 -1.209 0.227 -0.554
topic_8 -0.7278 0.087 -8.371 0.000 -0.898
Omnibus: 1944.496 Durbin-Watson:
Prob(Omnibus): 0.000 Jarque-Bera (JB):
Skew: -1.368 Prob(JB):
Kurtosis: 3.620 Cond. No.
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors i
/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py:249¢

return ptp(axis=axis, out=out, **kwargs)

50

12/12/2019

K-Means Clustering

We can also check out other unsupervised methods like clustering. |
borrowed/modified some of this code from http://brandonrose.org/clustering

[] from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=10, max iter=50, tol=.01, n_jobs=-1)

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.}
kmeans.fit(tfidf)

clusters = kmeans.labels_.tolist() # You can merge these back into t

[] centroids = kmeans.cluster_centers_.argsort()[:, ::-1]
for i, closest_ngrams in enumerate(centroids):
print("Cluster #{}: {}".format(i, ", ".join(np.array(ngrams)[clc

[» Cluster #0: chip, potato, bag, flavor, kettle, snack, great, salt
Cluster #1: dog, treat, food, love, chew, product, good, bone
Cluster #2: tea, taste, green, bag, drink, flavor, good, cup
Cluster #3: coffee, cup, flavor, strong, good, taste, roast, bold
Cluster #4: chocolate, dark, cooky, taste, hot, good, flavor, milk
Cluster #5: cat, food, eat, love, treat, wellness, chicken, dry
Cluster #6: product, great, price, good, store, love, taste, time
Cluster #7: bar, chocolate, snack, taste, nut, protein, good, sweet
Cluster #8: great, love, good, flavor, price, buy, time, store
Cluster #9: taste, good, sugar, great, flavor, drink, water, free

Agglomerative/Hierarchical Clustering

Instead of specifying the number of clusters upfront, now we're going to use
hierarchical clustering to characterize how similar words are to each other, again
based on their co-occurrence within documents. To keep things manageable, we'll use
a smaller set of 500 words.

[1 # This Python library lets us produce graphics
$matplotlib inline
import matplotlib.pyplot as plt

[] tfidf vectorizer = TfidfVectorizer(
max_df=0.25, # Focus on less common, more unique words
min_df=5,
ngram range=(1, 1),
stop_words=stop_words,
max_features=200 # <- smaller set of words
)
tfidf = tfidf vectorizer.fit transform(sample['Text'])
ngrams = tfidf_ vectorizer.get_feature names()

51

12/12/2019

[

]

from scipy.cluster.hierarchy import linkage, dendrogram
from sklearn.metrics.pairwise import cosine_similarity

We'll use cosine similarity to get word similarities based on doct
This produces a matrix of every word compared to every other word
With a value of 0 - 1, indicating how often they occur together ir
To get document similarities in terms of word overlap, just drop t
similarities = cosine_similarity(tfidf.transpose())

distances = 1 - similarities # Converts to distances

clusters = linkage(distances, method='ward') # Run hierarchical clus

fig, ax = plt.subplots(figsize=(10, 40))
ax = dendrogram(
clusters,
labels=ngrams,
orientation="left",
leaf font_size=14,
color_threshold=1.5

)
plt.tight_layout()

rotein
ar

l—'|

— Rttty
m

L

fruit
added
sweet
sugar
quality
high
natural
ln%] redient

]
1
fa
- I_‘—| calorie
1 low
serving
— I luten
ee
anut
utter

variety
favorite
available
in
giyf(fe?ent
new
kind
nght
delicious
texture
definitely
nice
light

52

12/12/2019

wonaertar

tasting

organic

company

extra

excellent

type

enjoy

cereal

hard

candy

tas

fres|

salt

chip

friend

famil

love

111

kid

milk
chocolate
cooky

nce

chicken

meal

sauce

hot

home

having

happy
week

A rupe i I e o

|

piece
minute
small
size
large
pack
ounce
le

expensive
shipping
cost
worth
money
package
came
received
order
ordered
case
perfect
arrived
purchase
item

purchased

oz
bottle
water
add
mix
use
make
easy
using
used
oil
coconut
Ir_iecgznmend
ighly
black
bean
vanilla
flavored
tea
reen
rink

53

12/12/2019

morning
blend

cu
copfee
strong

roast
dark

ggme
Iotg
better
little
bit
wa'
Ion)é
time
day
box
bought
buying
price
buy
say
review
I‘:Jl'i)&
think
sure

—]
know
don

want
love
great

product
really
flavor

ve
tried
S— brand
1 far
best

food
P o - iy
dry

Thank you!
https://bit.ly/2riCOUG

Full link: https://colab.research.google.com/github/patrickvankessel /AAPOR-
Text-Analysis-2019/blob/master/Tutorial.ipynb
GitHub repo: https://github.com/patrickvankessel/AAPOR-Text-Analysis-2019

Feel free to reach out:
pvankessel@pewresearch.org
patrickvankessel@gmail.com

Special thanks to Michael Jugovich for help putting these materials together for previous workshops

54

