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What we will talk about
● Why add apps, sensors, and wearables to surveys?

● What can we measure?

● What kind of research questions can be answered?
○ Case Study: IAB-SMART

● Study design considerations from the TSE perspective

● Processing data from sensors, apps, and wearables 
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Why add apps, sensors, and wearables 
to surveys? 
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1. New forms of measurement
○ In situ measurement (e.g., Ecological Momentary Assessments - EMAs)
○ Passive measurement with sensors (e.g., automatic collection of location and activity)
○ Use of other device features for active measurement (e.g., photos, videos)

5
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1. New forms of measurement
2. More detailed data (frequency and intensity)

○ High frequency of measurement (e.g., accelerometer with 60Hz)
○ New types of information that cannot be self-reported (e.g., different stages of sleep)
○ Various data formats from one device (e.g., location, motion, pictures,…)
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1. New forms of measurement
2. More detailed data (frequency and intensity)
3. More accurate data (sometimes!)

○ No self-report = No recall error
○ No self-report = Potentially less social desirability

7
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1. New forms of measurement
2. More detailed data (frequency and intensity)
3. More accurate data (sometimes!)
4. Less response burden

○ Fewer survey questions have to be answered about (Harari et al. 2017)…
■ Smartphone-mediated behaviors (e.g., # of calls & text messages, Internet browsing, 

app use)
■ Non-mediated behaviors (e.g., physical activity, sleep, movement, travel)
■ Daily activities (e.g., food intake, expenditure)

○ But what about other burden? - Consent, compliance, privacy, etc.

8
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1. New forms of measurement
2. More detailed data (frequency and intensity)
3. More accurate data (sometimes!)
4. Less response burden
5. Collecting data at scale

○ ~22,000 volunteer iPhone users downloaded Mappiness app and shared activities and affect 
(EMAs) plus geolocation (GPS) for 6 months (MacKarron & Murrato 2013) 

○ >100,000 participants of the UK Biobank study wore wrist accelerometer for 7 days (Doherty et al. 
2017)

○ 650 members of existing offline panel downloaded IAB-SMART app and responded to 
mini-surveys plus shared location, physical activity, smartphone use data for 6 months (Kreuter et 
al. 2018)
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1. New forms of measurement
2. More detailed data (frequency and intensity)
3. More accurate data (sometimes!)
4. Less response burden
5. Collecting data at scale
6. Introducing design to big data

○ Sensor data have many characteristics of Big Data (e.g., large volume, high velocity, variety of 
data formats)

○ Combining passive sensor data collection with self-reports through surveys introduces 
“design” to Big Data
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1. New forms of measurement
2. More detailed data (frequency and intensity)
3. More accurate data (sometimes!)
4. Less response burden
5. Collecting data at scale
6. Introducing design to big data
7. New research questions?
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What can we measure?
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Different devices with sensors
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Source: https://www.youtube.com/watch?v=FEr9D2glDXA 

Source: https://www.techradar.com/news/wearables/ 
best-smart-watches-what-s-the-best-wearable-tech-for-you-1154074  

Source: https://www.techradar.com/news/wearables/10-best-fitness-trackers-1277905 

Sources: https://www.actigraphcorp.com/actigraph-wgt3x-bt/ 
 https://www.activinsights.com/products/geneactiv/ 

Sources: http://www.canadagps.com/CanmoreGT-750FL_Sirf4.html  
 https://www.laserinst.com/trimble-geo7x-handheld/  

Source: https://www.sensirion.com/en/environmental-sensors/   
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Sensors in Samsung smartphones* 

14
*Chart created by Bella Struminskaya
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Native smartphone sensors 

Air humidity sensor

Barometer

Fingerprint sensor

GPS

Proximity sensor

Compass

Light sensor

Microphone

Thermometer
Bluetooth

Wi-Fi

NFC

Accelerometer
Gyroscope

Pedometer

Cellular network
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Camera

Heart rate sensor
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Location sensors
● GPS

○ Provides coordinates in longitude & latitude
■ Based on distance (= rate x time) to at 

least 4 satellites
○ Newest generation has accuracy within

30 centimeters
○ Works without cell/Internet connection
○ Performs worse in ‘urban canyons’, indoors,

& underground
○ Constant GPS tracking (e.g., on smartphone)

is very battery-draining 

Picture source: https://www.gpsworld.com/wirelesspersonal-navigationshadow-matching-12550/ 
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Location sensors
● GPS
● Cellular network

○ Multilateration of radio signals 
between (several) cell towers

○ Works even if GPS is turned off
○ If there is no signal then location

information will be missing

Source: https://www.cellmapper.net 

18Source: https://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-map-14790   
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Location sensors
● GPS
● Cellular network
● Wi-Fi

○ Inferring location from Wi-Fi access
points (AP)

○ Can overcome problem of ‘urban
canyons’ and indoor tracing

19

Source: https://www.wigle.net 
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Location sensors
● GPS
● Cellular network
● Wi-Fi
● Hybrid positioning systems

○ Uses combination of systems to make location more accurate (assisted GPS - AGPS)
○ E.g., fall-back on X if Y is not available
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Physical activity sensors

● Accelerometer
● Gyroscope

Source: Schlosser et al. (2019)
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Source: https://www.techradar.com/news/
wearables/10-best-fitness-trackers-1277905 

Sources: https://www.actigraphcorp.com/actigraph-wgt3x-bt/ 
 https://www.activinsights.com/products/geneactiv/ 
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● Accelerometer
● Gyroscope

and

● Magnetometer
○ Serves as compass

● Barometer
○ Allows to track changes in elevation

Physical activity sensors
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Heart-rate sensor
● Most wristbands use LED-based system

○ Light “shines” onto skin, sensor detects blood volume changes
○ “... finely-tuned algorithms are applied to measure heart rate

automatically and continuously…”
(https://help.fitbit.com/articles/en_US/Help_article/1565) 

○ Samsung Galaxy S uses similar system

● Used in combination with accelerometer to
determine sleep phases (e.g., on Fitbit)

23Source: https://help.fitbit.com/articles/en_US/Help_article/2163 

Source: https://exist.io/blog/fitness-trackers-heart-rate/ 
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Microphone & light sensor
● Microphone

○ “Actively” records answers to survey questions
○ “Passively” measures ambient noise (e.g., clutter), music, and conversations
○ To preserve privacy, classifiers determine that participant is, for example, “around 

conversation” but not able to 
reconstruct content of speech 
or to identify individual speakers

● Light sensor
○ Used to adjust display brightness
○ In combination with other sensors 

(e.g., accelerometer, microphone) 
infers idle state of phone/user & sleep 

24
Source: https://www.theverge.com/circuitbreaker/2017/9/15/16307802/apple-iphone-x-features-specs-best-worst 
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Smartphone-mediated behavior
● Activities inherent to functions of smartphone can be captured via use logs on 

device’s OS
○ e.g., phone calls, text messages, app use, Internet browsing behavior, setting changes
○ Logs usually include information about type of activity, time, and duration - NO information 

about content

● What actually can be recorded depends on OS and user settings
○ iOS much more restrictive than Android
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● Photos
○ Food, receipts, physical surroundings, etc.

● Video
● Barcodes
● Linear distance (iPhone Measure app)

Camera

26

Source: Jäckle et al. (2018)
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Bluetooth, RFID, & NFC
● Bluetooth

○ Short-range communication between devices up to 30 m
○ Enabled other devices can connect to smartphones or other

hubs to transmit data (e.g., weight, blood pressure, etc.)

● Beacons = small Bluetooth transmitters
○ Need to be dispatched by researcher & Bluetooth needs to be activated on receiving device
○ Great for indoor tracking

● Radio-frequency identification (RFID)
○ Electromagnetic fields to automatically identify and track tags 

attached to objects ~1m (3 feet)
○ e.g., assembly lines, merchandise in warehouses, livestock

● Near-field communication (NFC)
○ Communication between devices by bringing them within 4cm (1.6 in) of each other
○ e.g., contactless payment, data transfer, key cards

● All of them can be used to measure “social ties” 27

Source: https://www.renesas.com/jp/en/solutions/ 
proposal/bluetooth-low-energy.html 

Source: https://upload.wikimedia.org/wikipedia/ commons/2/2a/Weak-strong-ties.svg 
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What kind of research questions
 can be answered?
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Methodological … self-report & sensor data 
● One source verifies other

○ e.g., check and edit locations and modes of transportation registered for trip by app 
(Scherpenzeel 2017)

○ e.g., confirming self-reported social media use through tracked app usage 

● One source provides context for other
○ e.g., ask about reason for automatically detected trip (Green et al. 2016)

○ e.g., EMAs about happiness contextualized through information about GPS location (MacKerron 
& Mourato 2013)

● Correlating self-report with sensor data
○ e.g., self-reported stress correlates with passively measured sleep (Wang et al. 2014)

● Sensed behavior or state triggers survey questions
○ e.g., geofencing (Kreuter et al. 2018)

○ e.g., call to/from new number triggers questions about call (Sugie 2018)
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Substantive … a selection of research questions
● How does self-reported versus objective physical activity vary across 

countries? (Kapteyn et al. 2018)

● Do social connections influence health and well being? (Fingerman et al. 2019)

● How do environmental factors affect happiness? (MacKerron & Mourato 2013)

● How do people interact in large social networks? (Stopczynski et al. 2014)

● How much do households spend on goods and services? (Jäckle et al. 2019; Wenz et 
al. 2019)

● What food and drinks do Americans acquire? (Yan et al. 2019)

● Does smartphone use correlate with personality? (Stachl et al. 2017)

● Does mental health of students change over the course of a term? (Wang et al. 
2014)

● How do people find work after prison? (Sugie 2018)
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Case study: IAB-SMART - Unemployment research

31

Source: https://tilda.tcd.ie/about/project-description/data-collection/ Source: IAB
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IAB-SMART App (Kreuter et al. 2018)

● Android app, that…
○ …launches surveys
○ …passively collects smartphone data

● Over six months of data collection
○ Incentive experiment: 60 – 100€ (Haas et al. in press)

● Collected data can be combined with…
○ …German panel data (PASS)
○ …administrative records

● New data sources for unemployment research
○ Marienthal 2.0 (based on Jahoda, Lazarsfeld, & Zeisel 1933)

○ Social network analysis

● App developed by P3 insight
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PASS (Trappmann et al. 2019)

● Panel study ‘Labour Market and Social Security‘
○ Household panel survey by IAB
○ Major data source for research into unemployment & poverty

● Dual frame
○ Welfare recipients from national registers: Refreshed yearly by new entries
○ General population sample from municipal registers

● ~15.000 persons in ~10.000 households each year since 2007
● Sequential mixed-mode design: CAPI -> CATI
● Main topics: labor market participation, job search, benefit receipt, active labor 

market programs, social inclusion, health, income, deprivation
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Sample
● Sampling from PASS panel participants (aged 18-64)
● Wave 11, 2017: 

○ Do you own a smartphone?: 84% YES
○ Which operating system do you use?: 70% Android 

● Limited to smartphone owners with Android operating system
○ Passive access to sensor data only possible with Android

● Benefits of using PASS
○ Evaluation and separation of coverage-, nonresponse-, and measurement error
○ Higher willingness for cooperation

34
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Communication with participants
● Invitation package

○ Cover letter
○ Data protection information
○ Voucher flyer
○ Installation booklet 

● www.iab.de/smart
○ Frequently asked questions

● E-Mail address &
telephone hotline

35
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Types of data collected
● Network quality and location information

(every half hour)
● Interaction history
● Characteristics of the social network
● Activity data (every two minutes)
● Smartphone usage

● Self-reports (16 survey modules)
○ Time triggered
○ Location triggered (“geofencing”)
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Consent process

37
Google Play Store Google Permissions App installed
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Consent process

38
Linkage to PASS Registration Data processing
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Consent process

39
Individual consent 

screen
Function explanation Full consent App home screen
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Consenting to different functions

40
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Withdrawing consent

41
App settings Withdrawing consent Withdrawing consent App settings
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What are the effects of unemployment? (Bähr et al. 2018)
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Study design considerations from the 
TSE perspective
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Examples of representation error in app, sensor, and 
wearables data collection

● Coverage error: A study relies on 
participants to share data from their 
fitness wristbands to analyze weekend vs. 
weekday activity by race & ethnicity. The 
rate of ownership of these devices is lower 
in the study population than in the general 
population.

● Nonresponse error: Participants are 
provided with actigraphs to measure sleep 
patterns for a week. Those who do not 
sleep well remove the device at night 
because it disturbs their sleep. 44

Target Population

Sampling Frame

Sample

Representation

Respondents

Postsurvey Adjustments

Coverage Error

Sampling Error

Nonresponse 
Error

Adjustment 
Error
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Coverage smartphones
● In Europe, mobile Internet 

access varies between 31% 
(Italy) and 84% (Netherlands, 
Sweden) in 2017 (Eurostat 2018)

● Comparable numbers for 
Asian-Pacific area (Silver 2019)

● Levels in Africa substantially 
lower with much variability 
across countries (Silver 2019)

45

Source:https://www.pewinternet.org/fact-sheet/mobile/ 
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Smartphone coverage bias in Germany
(Keusch et al. under review)

● Smartphone ownership also 
correlates with…

○ Educational attainment
○ Nationality
○ Region
○ Community size

● Absolute bias in substantive 
PASS measures for smartphone 
ownership relatively small (< +/-6 
p.p.)

○ Can be reduced by weighting for 
sociodemographics (< +/-3 p.p.)

● Bias varies by OS 46Source: PASS Wave 11; n = 13,703; Locally weighted scatter-plot smoother (LOWESS) regression
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Wearables coverage in the U.S.

● In 2015, 24% of those aged 25 to 34 had 
wearable device

○ Projection for 2019: 38%

● 6.5% of those aged 55 to 64 had one
○ Projection for 2019: 13%

47Source: https://www.emarketer.com/content/wearables-2019 
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Nonresponse: Willingness to participate & actual 
consent
● Small-scale studies relying on enthusiasts: Willingness = 100%

○ e.g., Wang et al. (2014), Adams et al. (2014)

● Non-probability online access panels: Willingness between 5% and 56%
○ Varies across countries and by sensor type: 25%-52% for taking pictures, 19-37% for sharing 

GPS location (Revilla et al. 2016)

● Probability-based panels:
○ LISS Panel: Mobility (GPS, accelerometer) 37% willing, 81% participated; Physical activity 

(wearables) 57% willing, 90% participated (Scherpenzeel 2017)

○ UK Understanding Society Innovation Panel: Download budget app 17% (Jäckle et al. 2019)

○ German PASS: 16% installed IAB-SMART app (Kreuter et al. 2018)

● Cross-sectional general population studies:
○ CBS Travel App Download & Registration: 35% (McCool et al. 2019) 

○ WTP varies from 12% for photo of house to 67% for GPS (Struminskaya et al. 2018) 48
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Who counts as a participant? - IAB SMART 
● Invited W11 PASS participants with Android smartphone

● App installations
○ Valid registration code entered in app

● Any data submitted
○ Any passive measure or answered at least one survey question

● Data from correct person
○ Age and gender in app align with PASS W11 data

49
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Missing data over time

50
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51

Missing data over time
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What if we use “80%-rule” from AAPOR Standard 
Definitions? 

52

● Data from correct person

● At least 80% of any function
(≥144 days of passive data collection)

● At least 80% of…

● At least 80% of all five functions +
at least 80% of all Qx
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Mechanisms of (non-)participation: Concern
● Privacy/security concerns: higher privacy concerns correlate with lower WTP 

(Keusch et al. in press; Revilla et al. 2018; Struminskaya et al. 2019; Wenz et al. 2019) 

53Source: Keusch et al. (in press)
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Privacy & consent
● Participants might have concerns about potential risks related to sensor data 

○ Data streams could be intercepted by unauthorized party
○ Connecting multiple streams of data could re-identify previously anonymous users
○ Information could be used to impact credit, employment, or insurability

● Collecting IRB/GDPR-conforming consent
● Processing raw data on device
● Collecting data at lowest frequency necessary to answer research question 

54



F. Kreuter & F. Keusch; AAPOR Webinar; November 14, 2019

How to weight?
● Adjustment error: Within a study 

different assumptions can (need to) be 
made with respect to the population of 
inference.

○ Smartphone mediated behavior might only 
reflect the smartphone population or more 
specifically the given OS population

○ Non-mediated behavior might be more 
generalizable, little research has been done here

55
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Measurement error in app, sensor, and wearables 
data collection

● Measurement error: GPS is less precise 
in urban areas where there are many large 
buildings.

● Processing error: Raw accelerometer 
data is classified as different types of 
activity based on where sensor/phone is 
located (e.g., pocket vs. purse).

56

Construct

Measurement

Response

Measurement

Edited Response

Validity

Measurement 
Error

Processing 
Error
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Errors during data collection 
● Sensor-based errors/differences

○ Differences between types of sensors as well as brands and models of devices 
○ Not one sensor/device per se better than others, depends on what should be measured under 

what circumstances

● Device handling
● Erroneous data
● Providing feedback &

measurement reactivity

 

57Source: Schlosser et al. (2019)
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Errors during data collection 
● Sensor-based errors/differences
● Device handling

○ Measurement might differ depending on where/how
sensor/device is worn

■ e.g., differences in how men and women carry
around smartphones

○ Do people use device as anticipated by research?
● Erroneous data
● Providing feedback & measurement reactivity

58

Source: Sztyler et al. (2017)
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Errors during data collection 
● Sensor-based errors
● Device handling
● Erroneous data

○ e.g., fake GPS apps, VPN
● Providing feedback & measurement

reactivity
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Errors during data collection 
● Sensor-based errors
● Device handling
● Erroneous data
● Providing feedback & measurement

reactivity
○ Has not received much attention yet

 

60

Source: https://twitter.com/mbrennanchina/status/1128201958962032641
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Processing data from sensors, apps, and 
wearables

61
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From raw data to insights

62
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Examples of sensor data: Apple Health 

63



F. Kreuter & F. Keusch; AAPOR Webinar; November 14, 2019

Examples of sensor data: App use 

64
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Processing raw data
● Data needs to be cleaned and processed before analysis (“Data 

wrangling/munging”)
○ This usually takes much longer than data analysis (80/20 rule)

● Aggregation of raw data to meaningful data point level
○ What is “meaningful” depend on research and use of data

● Processing of raw data can happen on
○ User’s device using (built-in) third party or researcher-developed algorithm

■ Preserves storage and protects privacy
■ No access to raw data

○ Researcher’s server
■ Full control over data processing
■ All data needs to be transfered
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Model building pipeline

66
Source: Mulder et al. (2019)
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Example: Conversations
● Using smartphone microphone to

detect personal conversations
○ Microphone always on but content of 

conversation not transmitted
○ Outcome of inference: 0 = no 

conversation, 1 = conversation

● Processing raw data on device
○ Privacy sensitive classifiers (Wyatt et al. 

2007)

○ Transferred data only includes 
aggregated information

67
Source: Rabbi et al. (2011)
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What we talked about
● Why add apps, sensors, and wearables to surveys

● What can we measure

● What kind of research questions can be answered
○ Case Study: IAB-SMART

● Study design considerations from the TSE perspective

● Processing data from sensors, apps, and wearables 

68
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Questions

69
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Contact
If you have questions, need more information, or want to collaborate:

fkreuter@umd.edu

f.keusch@uni-mannheim.de 
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