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New Sources, New Problems

Webinar Goals

@ Understand the different types of non-probability samples
currently in use

@ Understand how non-probability samples can be affected by
errors such as coverage and nonresponse

@ Understand what methods of estimation can be used for
non-probability samples and the arguments used to justify them




Motivation for Non-probability Sampling

@ Low response rates for many probability samples (Kohut et al.
2012)

@ Ever increasing costs with ever decreasing funds
@ Nonsampling errors
@ The need for speed

@ Data are everywhere just waiting to be analyzed!!!

New Sources, New Problems

Examples of “New-ish” Sources of Data

@ Twitter
@ Facebook
@ Snapchat

Mechanical Turk

SurveyMonkey
Web-scraping
Pop-up Surveys
Data warehouses

Probabilistic matching of multiple sources




New Sources, New Problems

New Sources of Data: Example Studies

@ Analysis of medical records including text to predict heart disease (Giles &
Wilcox 2011)

@ Correlates of local climate & temperature with spread of infectious disease
(Global Pandemic Initiative)

@ MIT’s Billion Prices Project—Price indexes for 22 countries from web-scraped
data

Marketing of e-cigarettes (Kim et al. 2015)

Political polls and political issues (e.g., Clement 2016; Conway et al. 2015;
Dropp & Nyhan 2016)

Prediction of social stability (e.g., Kleinman 2014)

Public health events, outbreaks (Harris et al. 2014; Kim et al. 2012)
Research on subscribers to PatientsLikeMe.com

Ad-hoc surveys via Amazon’s Mechanical Turk

Google flu and dengue fever trends (defunct)
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Probability vs. Non-probability Samples

Probability sampling:
@ Presence of a sampling frame linked to population
@ Every unit has a known probability of being selected
@ Design-based theory focuses on random selection mechanism

@ Probability samples became touchstone in surveys after Neyman
(JRSS 1934) article

Non-probability sampling:
@ Investigator does not randomly pick units with KNOWN
probabilities

@ No population sampling frame available/desired
@ Underlying population model is important
@ Differing opinions on reporting estimates of error




Probability vs. Non-probability Samples

@ We focus on surveys with the goal to use sample to make
estimates for entire finite population—external validity

@ Many applications of big data analysis use non-probability
samples. Population may not be well defined.

@ Many probability surveys have such low RRs they basically are
non-probability samples
e Pew Research response rates in typical telephone surveys dropped from 36%
in 1997 to 9% in 2012 (Kohut et al. 2012)

@ Recommendations for using non-probability samples:

@ AAPOR task force reports on non-probability samples (2013) & online
samples (2010)

@ Perils and potentials of self-selected entry (Keiding & Louis 2016)

New Sources, New Problems

Three Categories of Non-probability Samples

@ Convenience—units at hand selected; notion overlaps with
accidental, availability, opportunity, haphazard or unrestricted
sampling

@ Matched—units are drawn into study (panel) based on
characteristics, i.e., controlled selection

@ Network—a set of units form starting seeds, which sequentially
lead to additional units selected (aka snowball, respondent driven
sampling)

(Note: Sirken network sampling is an exception)
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New Sources, New Problems

Types of Convenience Samples

@ Volunteer sampling—recruitment at events (e.g. sports, music, etc.)
and other locations (e.g. mall intercept, street recruitment), limited (if
any) refusal conversion

@ River sampling—general or study-specific invitation through
banner/pop-up web ads, etc.

@ Mail-in surveys—type of volunteer sampling with paper-and-pencil
questionnaires, distributed as leaflets at public locations (e.g. hotels,
restaurants) or enclosed in magazines, journals, newspapers, etc.)

@ Tele-voting (text message)—type of volunteer sampling where people
are invited to express their vote by calling-in or by sending a text (TV
shows, contests)

@ Observational—"you get what you see”

Types of Matched Samples

@ Purposive sampling—selection follows some judgment or
arbitrary ideas of looking for a “representative” sample

@ Expert selection—subject experts pick the units, e.g., two most
typical settlements selected from a region

@ Quota sampling—sample “improved” by obtaining targeted
socio-demographic quotas (e.g. region, gender, age) to reflect
population distribution

@ Balanced sampling




New Sources, New Problems

Comments on Balanced Sampling

@ Samples selected until means or other quantities match the
population (Sarndal et al. 2003)

@ Estimates are either unweighted (e.g., average) or via a model
@ Quota sampling is a subset and focuses only on observable
characteristics

@ Shown to protect against misspecified inferential models
(Royall & Herson 1973; Valliant et al. 2000)

@ For probability-based balanced sampling
e Survey weights are required (e.g., Horvitz-Thompson estimation)
o Cube method randomly chooses from a set of balanced samples
(Deville & Tillé 2004)

New Sources, New Problems

Survey Errors

@ Coverage

@ Selection bias
» Coverage and/or selection bias is a problem if the seen (sample) part of the
population differs from the unseen (nonsample) in such a way that the sample
cannot be projected to the full population

@ Nonresponse
» (some unknown nonresponse for non-probability surveys)

@ Attrition

@ Measurement error (e.g., satisficing—provide an acceptable
answer instead of the correct one)




New Sources, New Problems

Non-probability Electoral Polls: Many Failures

Early failure of a non-probability sample
@ 1936 Literary Digest mail survey
@ 2.3 million subscribers plus automobile and telephone owners
@ Predicted landslide win by Alf Landon over FDR
@ Excluded core lower-income supporters of FDR

More recent failures

@ British parliamentary election May 2015
Sturgis et al. (2016) is a post mortem

@ Israeli Knesset election March 2015
@ Scottish independence referendum, Sep 2014
@ US state of Michigan democratic primary, 2016

Non-probability Electoral Polls: One that Worked

continuously before 2012 US presidential election

@ Xboxers much different from overall electorate:

@ 18- to 29-year olds were 65% of dataset, compared to 19% in
national exit poll
@ 93% male vs. 47% in electorate

@ Unadjusted data suggested landslide for Romney
@ Wang et al. (2015) used multilevel regression and
poststratification to get good estimates with covariates

@ sex, race, age, education, state, party ID, political ideology, and
who they voted for in the 2008 presidential election

@ Xbox gamers: 345,000 people surveyed in opt-in poll for 45 days




Comparing Probability and Non-probability Samples

Mixed results

@ Kennedy et al. (2016)—compared 9 non-probability and 1
probability sample

@ Dutwin & Buskirk (2016)—some techniques show benefits (e.g.,
sample matching) but ....

@ Tourangeau et al. (2013)—examined wt adjustments for 8 opt-in
web panels using weight with mixed results

@ Yeager et al. (2011)—compared RDD and non-probability internet
survey with results varying by type of variable

@ Valliant & Dever (2011)—effective propensity scores are possible
with weighted reference survey cases
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Inference Problem

Universe & Sample

Covered

@

Potentially
covered

U- Fi

F.

[ Not
covered

\§

For example ...

@ U = adult population

@ U — F = adults without internet access

@ F,. = adults with internet access

@ F'. = adults with internet access who visit some webpage(s)
@ s = adults who volunteer for a panel




Inference Problem

lllustration of a Coverage Problem

@ Volunteer web panel surveyed about voting intentions
@ Support for 2 candidates differs by age group
@ Suppose the panel has no one in older groups

A E C D F G H
Percentage of voters Proportion of
favoring (fictitious) total Presidential B*F C*F
Age group Candidate A Candidate B vote in 2012 Candidate A Candidate B
18to 24 47 30 0.09 4 3
25to 44 46 35 0.30 14 11
45to 64 40 42 0.3% 16 16
65to 74 years 30 50 0.13 4 6
75+ 25 70 0.09 2 7
Total 1.00 40 43
Total excluding 65 and older 43 38
Total excluding 75 and older 11 40

Inference Problem

Correcting for Sample Imbalance

@ Quota sampling or other type of controlled recruiting
(YouGov/Polymetrix); no weights needed

@ Weights to correct imbalance of sample compared to pop

e Two approaches to weighting

@ Quasi-randomization weighting
@ Superpopulation modeling of y’s

Both involve modeling




Flavors of Missing Data

@ MCAR (Missing completely at random)
—Every unit has same probability of appearing in sample

@ MAR (Missing at random)

—Probability of appearing depends on covariates known for
sample and nonsample cases

@ NMAR (Not missing at random)
—~Probability of appearing depends on covariates and y’s

Population Inference: Estimating a Total

@ Poptotal t =3 v+ 2p s Uit 2 p, Uity Ui

@ To estimate ¢, predict 2nd, 3rd, and 4th sums

U- Fye

Not
covered

Project this to all of U

@ What if non-covered units are much different from covered?

@ Difference from a bad probability sample with a good frame but
low RR:

» Nounitin U — F or F,. — F. had any chance of appearing in the
sample




Methods of Inference Quasi-randomization

Population Inference: Quasi-randomization Approach

Model probability of appearing in sample

Pr(v € s) = Pr(has Internet)x
Pr(visits webpage | Internet)x
Pr(volunteers for panel | Internet, visits webpage)x

Pr(participates in survey | Internet, visits webpage, volunteers)

Probabilities are sometimes estimated with special Reference
(probability) sample or an existing sample (ACS, NHIS, etc.)

Methods of Inference Quasi-randomization

Population Inference: Quasi-randomization Approach

Propensity score method:
@ Put s and reference sample together

@ Estimate pseudo-inclusion probability 7; = Pr(: € s) via binary
regression

@ Use 1/m; as a weight

@ Model covariates:
e demographic items

e webographic (attitudinal) items
—mixed results (Schonlau et al. 2007; Lee et al. 2009))

e covariates highly correlated with y’s (Lee 2006; Dever et al. 2015)




Methods of Inference Quasi-randomization

Population Inference: Quasi-randomization Approach

Binary regression to estimate propensity scores:
@ Code non-probability cases = 1; reference cases = 0
@ Wnon—pros = 1 fOr non-probability sample cases
@ wgr.s = SUrvey weight for reference survey cases
@ Propensities estimate probability of being in non-prob sample
within whatever pop the reference weights to. Cases:
e wg.s T adult pop with internet access
e wg.s T adult pop regardless of internet access
@ Caveats—reference survey weighting must correct for any
coverage and nonresponse error

@ Poststratification, raking, or other calibration often applied after
getting pseudo-inclusion probabilities

Methods of Inference Quasi-randomization

Population Inference: Quasi-randomization Approach

Assumptions important for propensity score methods (Valliant & Dever
2011):

@ Surveys are disjoint (no respondent overlap)

@ Nonparticipants in non-probability survey are MAR

@ Large reference survey from target population

@ |dentical key items on covariates in both questionnaires
°

Propensity scores:

@ have common support in reference and non-probability (distributions
overlap)
@ estimated with reference survey weights




Methods of Inference Model for y

Population Inference: Superpopulation “Prediction”
Approach

@ Use a model to predict the value for each nonsample unit (Valliant
et al. 2000)

@ Linear model: y; = xTB + ¢,
@ If this model holds, then

E=>"w >t D> it > W
S

F.—s Fpe—F, U—Fpe

= Z Y; + téTU_s),mB

=t5.B; % =x'B

Note: Nonlinear models require individual z’s for nonsample units

Methods of Inference Model for y

Population Inference: Superpopulation (Prediction)
Approach

t= Zs Yi + tngfs),mﬁ
@ A=A."XTy,, where A, = XTX,
@ X, is n x p matrix of covariates for the sample units

@ y; is the n-vector of sample y’s

Resulting weight:
w; =1+ t(TUfs),IAsflxi

where t(_,) . = vector of z totals for nonsample units

Note: With this 8, weights do not depend on y’s
Similar structure to generalized regression estimation (GREG)




Methods of Inference Model for y

y’s & Covariates

@ If y is binary, a linear model is being used to predict a 0-1 variable

» Done routinely in surveys without thinking explicitly about a
model

@ Every y may have a different model = pick a set of z’s good for
many y’s

» Same thinking as done for GREG and other calibration
estimators

@ Undercoverage: use z’s associated with coverage

» Also done routinely in surveys

Methods of Inference Model for y

Modeling Considerations

@ Good modeling should consider how to predict y’s and how to
correct for coverage errors

@ Covariate selection: LASSO, CART, random forest, boosting,
other machine learning methods

@ Covariates: an extensive set of covariates needed
(Dever, Rafferty & Valliant 2008; Valliant & Dever 2011; Wang et al. 2015)

@ Model fit with sample needs to hold for nonsample (difficult
[impossible?] to prove)




Methods of Inference

Pros and Cons with Quasi-Randomization and
Superpopulation

Quasi-randomization
@ Pro = general weights for estimating any y

@ Con = possible bias with respect to the superpopulation model for =;
Superpopulation
@ Pro = model-specific estimators with lower variance than quasi-randomization

@ Con = possible bias with respect to the superpopulation model for y;

Notes: Model misspecification a worry for both
Bayesian variations available for each

See review paper by Elliott & Valliant (forthcoming)

Methods of Inference

Software

Quasi-randomization

@ Propensity classes: pclass function in R PracTools package (Valliant et al.
2015)

@ WTADJUST and WTADJX in SUDAAN 11 (Kott 2016; RTI1 2012)

@ Custom-written software in SAS, Stata, R, etc.

Superpopulation modeling

@ calibrate functionin R survey package (Lumley 2014)
ReGenesees in R (Zardetto 2015)
WTADJUST and WTADJX in SUDAAN 11 (Kott 2016; RTI 2012)
ipfraking in Stata (Kolenikov 2014)
sreweight in Stata (Pacifico 2014)

svycal in future version of Stata

Set weights to 1 in design-based calibration routines




Simulation Study: Set-up (Valliant & Dever 2011)

@ Data: 2003 Michigan Behavioral Risk Factor Surveillance Survey
(MI BRFSS)

@ 2,845 sample persons bootstrapped to N = 50, 000 study
population

@ R = 10,000 simulation runs with two samples:
@ \Volunteer sample
@ Volunteers selected by Poisson sampling; n = 500 (expected)
@ Logistic regression for volunteering; probabilities based on having
internet access
@ Volunteering probabilities generated with logistic regression with
covariates: age, race, gender, wireless phone, education, income

@ Reference sample—srswor of n = 500 from non-volunteers

Simulation Comparisons

Simulation Study: 4 Estimators Evaluated

@ individual propensity weights (1: propensity wts)

@ average propensity weights in each of five subclasses (2: avg
propensity wis)

© propensity-poststratified estimator (3: propensity PS)

© calibration to population totals of covariates (no propensity
adjustment) using a regression estimator (4: calibration to X);
example of a prediction estimator

10,000 simulations with 500 in each volunteer & reference samples




Simulation Comparisons

Simulation Study: Statistical Results

Unweighted propensity parameter estimates Weikghted propensity parameter estimates

g
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Simulation Study: Key Findings

@ Reference survey weights need to be used to estimate
propensities of volunteering

@ Estimates with individual propensities or average propensity
weights within classes are biased with unweighted propensity
estimates, but less so with weighted

@ Propensity-poststratification poor with unweighted or weighted
propensity estimates

@ GREG and estimate with individual propensity weights generally
have smallest biases

@ If probability of volunteering depends on y analysis variables, all
estimators are biased




Simulation Comparisons

Other Research

@ Desire to compare estimates from non-probability against “the
truth” leads researchers to contrast probability and non-probability
surveys

@ Quasi-randomization techniques do not always work
(e.g., Dever & Brown 2016; Willis et al. 2015; Rothschild & Goel 2014; Valliant &
Dever 2011; Yeager et al. 2011; Lee & Valliant 2009; Schonlau et al. 2009;
Rivers 2007; Duffy et al. 2005)

@ Limited comparisons with model-based estimation

@ Lingering concerns
@ Were right covariates available?
o Were they used correctly—multiway interactions?
e Poor modeling leads to biased estimators

Simulation Comparisons

Variance estimation

Quasi-randomization

@ Treat pseudo-inclusion probabilities in same way as designed-based selection
probabilities

@ Design-based variance estimators apply. Justification is consistency under
quasi-randomization distribution

@ Linearization or replication can be used
Replication shows most promise (Lee & Valliant 2009)

@ Need to decide whether strata and clusters are appropriate

Superpopulation modeling

@ Compute variance under model used for point estimates with variance based on
squared residuals

@ Replication estimators also justified (Valliant et al. 2000)
@ Bayesian models, e.g., credibility interval (Santos, Buskirk & Gelman 2012)
with(out) applying survey design effects

@ Justification is consistency under superpopulation model




Takeaway

@ Non-probability samples do not have the (false?) assurance of
complete population coverage that probability samples do

@ Inference to finite populations is possible but only with either
correct modeling of

e Chance of being in sample, or
e Dependence of analysis variables on covariates

@ Convincing users that a non-probability sample represents
nonsample part of population will always be an issue
(true for low RR probability samples, too)

Diagnostics

@ Work needed on diagnostics for "representativity”
@ Are non-probability estimates aiming at desired target population?

@ Distance measure
6 = set of estimates from non-probability sample
# = values from some reliable data source (ACS, NHIS, CPS,
census, etc.)

~ ~

D?=(6-6)T[cov(d —6)] (6 —0)

Compare to a chi-square distribution or F'

@ Validation items in 4 are not used in non-probability weight
calculation; may not be of direct interest in the survey




The Future .....

@ Quasi-randomization—model pseudo-inclusion probabilities
@ Superpopulation models—model the y’s

@ Combination

The Future .....

@ Quasi-randomization—model pseudo-inclusion probabilities
@ Superpopulation models—model the y’s

@ Combination

Which is better???
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