

Social Media and Public Opinion Research: A Road Map for Rigor, Transparency & Replicability

Sherry Emery, MBA, Ph.D.

AAPOR Webinar
January 24, 2019

Outline

- Why social media data? How does this relate to Public Opinion Research?
- How social media data are collected, filtered, and reported can vary widely
- How to collect the data?
 - → Use "search filter"
- How good are your data?
 - → Assess the quality of search filter
- How to report about the data?
 - → Reporting standard

-

Why Social Media

- Sources of observing health attitude, intention, and behavior
- The real world for youth and young adults¹
- Data dimensions to consider
 - Amount
 - Content
 - Source
 - Diffusion & network

1. 90% of US 18-29 year olds use social media; 2. Source: Pew Research Center surveys

NERC at the UNIVERSITY of CHICAG

Social Media Data 101

- Social media data Rule 1
 - Analysis is "easy"
 - Data collection and management represent at least 90% of the work
- Social media data Rule 2
 - How you collect (and report) the data WILL influence inferences/conclusions

How to Collect Social Media Data?

- Use search filter
- Search Filter = Keyword + Search Rule

Keyword selection is not simple

- · Language and culture vary and change
- Different language norms, tech constraints, and social functions across platforms

Search rules for more focused search

Stryker, Wray, Hornik, & Yanovitzky. Journalism & Mass Communication Quarterly 2006 Jun 01;83(2):413-430.

Not All Data Are Good Data!

• "SMOKING" is an important keyword in tobacco research

Not All Data Are Good Data!

- Smoking cigarettes vs. marijuana

Quality of search filter

- ⇒ Validity of inference
- Mixture of good and bad data in massive quantity
- Use search filter to filter out irrelevant contents

Otherwise biased inference

The search filter affects the amount and content of data

N&RC at the UNIVERSITY of CHICAGO

N & RC

Search Filter Development	
	N&RC at the UNIVERSITY of CHICAGO

Search Filter Development

- 1. Build a list of **search keywords** (Stryker et al. 2006)
 - **I. Generate a list of candidate keywords** based on expert knowledge, systematic search of topic-related language, and other resources.
 - **II.** Screen the keywords by examining relevance and frequency.
 - **III. Discard keywords** that return posts with high proportion of irrelevant contents or relatively low frequency.
 - IV. Add and screen new keywords when new relevant terms and phrases emerge.

Repeat II to IV until no more new relevant terms

2. Integrate keywords with **search rules** e.g., "atomizer" NOT "perfume"

Stryker, Wray, Hornik, & Yanovitzky. Journalism & Mass Communication Quarterly 2006 Jun 01;83(2):413-430.

NERC at the UNIVERSITY of CHICAGO

Language (English) Filter

- Language filter affects amount and content of the data
- Metadata: Twitter as an example
 - Actor's language: User's default language (if user provides)
 - Lang³: Machine-detected language¹ of the tweet text.
 - Gnip's language value³: Gnip's language detection. Language detection 1.0.
 - Twitter_lang: Language detection 2.0
- Machine learning algorithm
 - Language detection libraries of python
 - e.g. langid (Lui and Baldwin 2012), langdetect, pycld2 (Dick Sites²)

1. BCP 47 language identifier; 2. CLD: compact language detection; 3. Not provided from Gnip 2.0

NERC at the UNIVERSITY of CHICAGO

Language (English) Filter E-cigarette Tweets 2014-2015 Example: 2000 E-cigarette tweets 1800 1600 • Filter on actor's language, lang, Gnip's language value - English if 50% or 1400 more of available language fields 1200 indicates English 1000 Different filters 600 Change amount and content 400 Affect classifier training 200 Report

►Raw tweets

Raw tweets excluding non-English

Relevant tweets

at the UNIVERSITY of CHICAGO

• whether language filter is used

• how it is carried out.

Search Filter Assessment Linked in facebook PHOUTUBE WORDPRESS NECC ALM NINESTRY CHICAGO

Retrieval Data Quality Measures

Recall = a/(a+c)

How much of the relevant messages is retrieved?

- Precision = a/(a+b)
 How much of the retrieved messages is relevant?
- F-Score
- Specificity = d/(b+d)
- Negative predictive value = d/(c+d)

	Human Coding		
Search Filter	Coded Relevant	Coded Not Relevant	
Retrieved	a (TP)	b (FP)	
Not Retrieved	c (FN)	d (TN)	

19

Retrieval Data Quality Measures

$$Recall = \frac{(precision)P(retrieved)}{(precision)P(retrieved) + P(relevant|unretr)[1 - P(retrieved)]}$$

Retrieval recall and precision ≠ **Classifier** recall and precision

Trade-off between recall and precision

Humans Can Make Errors: Subject Matter Expertise is Necessary

Human coding may not be a gold standard

- Ambiguous language
- Short messages
- Creative terms, unknown acronyms, slang, and colloquial
- Misspelling
- Fatigue
- Human coding has <100% recall, <100% specificity
 - → Biased assessment of search filter quality (Staquet et al. 1981)

 $Staquet\ et\ al.\ Methodology\ for\ the\ assessment\ of\ new\ dichotomous\ diagnostic\ tests.\ J\ Chronic\ Dis\ 1981; 34(12):599-610.$

23

Concrete Examples: E-Cigarette Messages on Twitter

Category	Keywords and Rules	
Variations and alternative terms of e-cigarettes	ecig(s), "e cig(s)", e-cig(s), ecigarette(s), e-cigarette(s), ehokah, e-hookah, ejuice(s), e-juice(s), eliquid(s), e-liquid(s), esmokes, e-smoke(s), lavatube(s), smokestik(s)	
E-cigarette device parts	cartomizer(s), atomizer(s), NOT perfume	
Specific brand of e-cigarettes	@blucig, from:blucig, blu cig, blu cigarette, njoy cig, njoy cigarette, "green smoke" "south beach smoke", eversmoke, "Joye 510", joye510, joyetech, logicecig, logicecigs, smartsmoker, "v2 cig(s), v2cig(s), zerocig(s)	
Behavior	vaper(s), vaping	
25	NERC at the UNIVERSITY of CHICAGO	

Data Collection Experiment: How You Get Data Matters

- Tweets posted from Jan 15 Jun 15, 2015 via 3 APIs
- Consistent keywords across the APIs
- Keywords for the three topics

Tobacco	E-Cigarettes	Anti-Smoking
cig hookah(s) tobacco shisha rello(s) cigarillo(s) skoal snus Marlboros	ecig vaper(s) Vaping eliquid(s) e-liquid(s) cartomizer	@drfriedencdc smokefree secondhand smoke quitline(s) #quitnow

N&RC
at the UNIVERSITY of CHICAGO

Tweet Volume

- The tweets largely overlapped between the 3 APIs.
- But, each API retrieved unique tweets too.
- Unique tweets may result in different research conclusion.

Tweet Volume

- The tweets largely overlapped between the 3 APIs.
- But, each API retrieved unique tweets too.
- Unique tweets may result in different research conclusion.

Tweet Volume

- The tweets largely overlapped between the 3 APIs.
- But, each API retrieved unique tweets too.
- Unique tweets may result in different research conclusion.

Tweet Volume

- The tweets largely overlapped between the 3 APIs.
- But, each API retrieved unique tweets too.
- Unique tweets may result in different research conclusion.

Reporting Standard For Social Media Data Use

■ Data ■ Development of search filter ■ Assessment of search filter What I Want Our Field To Prioritize datacolada org/53/ 7.43 AM - 30 Sep 2016 ■ 38

Minimum Disclosure

Data

- Scope of the study
- Platform, time frame
- Source or method used to access data
- Definition of e-cigarette posts
- Twitter, Oct 1-Oct 31 2015
- Twitter Streaming API

Development of search filter

- Keywords generation and refinement
- List of final keywords and search rules
- Criteria to drop or add keywords
- Precision and frequency of keywords.
- Acceptable signal-to-noise ratio
- Research topic determines the definition of "noise"

At the UNIVERSITY of CHICAGO

39

Minimum Disclosure

Assessment of search filter

- Assumption about human coding
- Sampling frame and size for human coding
- Quality measures
- Classifier training, if used to retrieve relevant data
- Human coding as gold standard
- Proportionate stratified sampling, oversample of certain keywords, etc.
- Inter-coder reliability
- Retrieval precision & recall
- Classifier precision & recall

At the UNIVERSITY of CHICAGO

Preferred Disclosure

- Source code
- Model equations
- Coding/labeling instructions manual
- Ethical concerns/need for IRB review
- Data decay assessment

41

Summary & Discussion

- Social media are valuable and alternative or complementary data sources for public opinion and behavioral research
- Collecting social media data that are both precise and accurate is critical to reaching correct research conclusions
- Need a standard of reporting social media data collection, filtering and quality, so that quality of data retrieved and analyses may be compared across different studies
- Our method to develop search filter and assess its quality can be adapted to other text-based social media data
- Future research: semi-automation of keyword selection

Thank You!	