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Background
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Data Collection

• During the 2021 American Housing Survey (AHS) operation, several 
thousand interviewers took to the field

• Each day throughout the operation, the Field Quality Monitoring 
(FQM) team of the Census’ Office of Survey and Census Analytics 
(OSCA) collected metadata on each incoming case across a variety of 
metrics

• Metrics were then aggregated up to a series of rates at the interviewer level

• The FQM team then launched investigations into interviewer work in 
response to data anomalies
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The Anomalies

• The FQM team identified anomalies in a variety of ad-hoc ways
• Automated flagging with Interquartile Range (IQR)

• Across each metric
• Outside of Q1 - 1.5*IQR or Q3 + 1.5*IQR in any metric
• Flagged and sent to a human for investigation and manual verification

• This provided us with a natural experiment, where coded anomalies 
became the positive class for our experiment
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Motivation for Improvement

• IQR is not the most accurate tool
• Was easy to create and start with, but we believe that we can improve upon it

• Limiting False Negatives
• Not detecting false data can have widespread impact on survey estimates

• Limiting False Positives
• Investigating false positives takes resources away from working true positives 

5



Experimental Design
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Feature Selection

• During AHS, FQM monitored the data of many different metrics.  For 
this experiment, we pared down our data set to just 4 metrics

• The metrics were normalized as percentages of all cases completed 
by the individual

• Combined with two one hot encodings (OHE) as control variables
• Interviewer geography 
• Date in the operation
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The Dataset
• Data was divided, by interviewer, into training and validation sets
• About 100 days worth of data was used in the training set 

• Used to tune hyperparameters of each model

• Each tuned model then made predictions on the holdout interviewers 
to identify outliers in each of the 100 days
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Model Selection

• Three models were ultimately selected to compare against a 
benchmark of IQR, and against one another for accuracy

• Multiple (cubic) linear regression with a cook’s distance calculation
• Isolation Forest
• Extreme Gradient Boosting Outlier Detection (XGBOD)

9



Model Overview
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Multiple Regression With Cook’s Distance

• A cubic regression was selected to model the shape of interviewer 
case rates

• Cooks distance, or “delete one analysis”, was used to identify 
anomalous points

• Linear regression, being slightly different than the other pair of 
models required a regressand to fit against the regressors

• Rate of completed cases of the interviewer
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Cook’s Distance
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Isolation Forest

• Tree based algorithm that achieves outlier “isolation” via random 
recursive partitioning of data to emphasize anomalous points 

• Traditionally an unsupervised method
• We trained ours using a grid search with k-fold cross validation to 

identify the strongest hyperparameters
• 4 folds were used for cross validation for each set of hyperparameters 
• Estimated grid search of hyperparameters

13



Isolation Forest
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Source: Sal Borrelli - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=82709491



What is XGBOD?

• XGBOD is a framework established to improve the performance of 
xgboost classifiers1

• It is a three step semi-supervised learning algorithm
• Generate “Transformed Outlier Scores” (TOS)
• Pare off resultant scores
• Perform a gradient boosted forest classifier on the newly modified feature 

space

1Zhao, Y. and Hryniewicki, M.K., "XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning," International Joint 
Conference on Neural Networks (IJCNN), IEEE, 2018.
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XGBOD Framework

Source: Zhao, Y. and Hryniewicki, M.K., "XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning," 
International Joint Conference on Neural Networks (IJCNN), IEEE, 2018.
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TOS Unsupervised Models

• Our XGBOD TOS models included only those in the original XGBOD 
code demonstration

• k-nearest neighbors 
• One Class Support Vector Machine
• Isolation Forest

• A range of values for k (KNN), mu (SVM), and number of trees 
(isolation forest) tested 

• Results randomly looped over and a portion were added to the model as 
features
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Why These Models?

• Raising the bar
• Cook’s D has been a highly effective tool for decades
• Isolation forest is a leading SOTA model 
• XGBOD promises superior performance

• Supervised vs unsupervised
• All 3 models can easily be trained for either scenario
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Results
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Overall Performance
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Interviewer Level Performance
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Conclusion
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Limitations

• Inaccurate coding of data irregularity start date
• Many interviewers likely changed their patterns 

• The dilemma of unknown unknowns 
• Some anomalies were likely missed and miscoded as non-anomalous

• XGBOD training resources
• Training took many hours even with a slimmed down data set. Accuracy was 

left on the table
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Closing Remarks
• We’ve known for some time that ensemble approaches used by some 

models (i.e. decision trees) are effective tools for improving model 
robustness

• XGBOD uses a similar concept with an ensemble of models, albeit a more 
heterogenous selection than tree based approaches

• Based on this experiment, XGBOD did appear significantly more 
effective than a single model, as claimed by its authors

• Future research should combine other algorithms to create additional 
features, as is currently being done with the SUOD project
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