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Background and context



COVID-19 pandemic

▪ Numerous new COVID-19 related survey items

▪ Circumstances prevented our usual approach: in-depth cognitive 
interviewing to inform closed-ended online survey web probes

▪ Adapted and innovated our methods to include both closed and 
open-ended probes and experimental designs for post-hoc 
evaluations



Open-text data: value and challenges 

▪ Range of methodological uses for open-text data (Singer & Couper, 2017)

▪ Allows for responses without constraint (Schonlau & Couper, 2016) a particular 
advantage when little is known about a topic (Neuert et al., 2021, Scanlon, 2019; 
2020) 

▪ But higher response burden, more prone to item nonresponse, 
inadequate and irrelevant responses

▪ Coding and analysis can be labor intensive and time-consuming

▪ Recent advances in data science offer new efficiencies and 
opportunities



Item nonresponse detection: prior work 

▪ Categorizing item non-response

• “nonproductive” responses (Behr et al., 2012)

• Indirect (soft) versus direct (hard) refusals (Meitinger et al., 2021)



Item nonresponse detection: prior work, cont’d 

▪ Detecting item non-response

• EvalAnswer* (Kaczmirek et al. (2017); available on GitHub)

• Complete non-response: blank text box

• No useful answer: “dfgjh”

• Don’t knows: “I have no idea”; “DK”; “I can’t make up my mind”

• Refusals: “no comment”; “see answer above”

• Other: insufficient to code; “it depends”; “just do”; “just what it is”

• Single word: “economy”

• Too fast: < 2 seconds to answer

* https://git.gesis.org/surveymethods/evalanswer

https://git.gesis.org/surveymethods/evalanswer


Item nonresponse detection: prior work, cont’d 

▪ Limitations of EvalAnswer

• Relies on regular expressions (regex)

• Missed some gibberish and don't know responses: "I dunno“; "no clue“

• Flagged single word responses that are valid: "quarantine“; "furloughed“; "closings“

• Flagged valid responses that include one of the rules: 

• “I have not bee unable to travel to see my grandsons who live away from me. I am unsure how this country is 
going to fare.” [emphasis added]

• Marked some non-response as valid: 

• "this is not a good question“; "I think my answer is self explanatory"



Item nonresponse detection: Model development

▪ Trained a natural language processing 
(NLP) model to interpret responses. 

– Fine-tuned a Bidirectional Transformer for 
Language Understanding (BERT)* model 
using Simple Contrastive Sentence 
Embedding (SimCSE)**

▪ Refined training via human coding 
(active learning)

* https://arxiv.org/abs/1810.04805

** https://arxiv.org/abs/2104.08821

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2104.08821


Item nonresponse detection: Model development, cont’d 

▪ Our working taxonomy:

• Complete non-response: Blank text box

• Gibberish or nonsensical: “dfgjh”

• Don’t knows: “I don’t know”; DK; idk

• Refusals: “no comment”; “Because”; “none”

• Other, high-risk: non-useful response, non-codable

• Valid: useful response, codable

▪ The model assigns a score (0-1) for the extent to which a response falls 
into each of the item non-response categories



Model development: Active learning 

▪ Round 1

• 5 coders hand-coded 1,400 each, 200 overlapping with one other coder; full overlap 
for 500

• Good consistency with most categories (gibberish, DKs, refusals)

• Less consistency between valid versus “other, high risk” item nonresponse

• Good results for identifying item nonresponse, but flagged more valids than we 
wanted

▪ Round 2:

• 2 coders reviewed and arbitrated the results to retrain the model

• Uncertainty retained in the model when warranted



The data

▪ NCHS’s Research and Development Survey (RANDS) 
https://www.cdc.gov/nchs/rands/index.htm

▪ RANDS During COVID-19 – Multi-round web/phone survey

▪ Topics: health, impacts of pandemic on health care access, COVID-
19 related health care and behaviors

▪ Round 1 fielded June-July 2020: 13,020 Completes

• 6,800 NORC’s AmeriSpeak probability-based sample = 23.0% weighted 
cumulative response rate/78.5% completion rate

• 6,220 Dynata opt-in panel



Model evaluation: our approach



Model evaluation: our approach

▪ Mixed-method evaluation of two web probe case studies

• Quarantine probe

• Pandemic time reference probe



Evaluation results



Round 1: model was initially very uncertain



Round 2: model is now much more uncertain



Quarantine probe

▪ Quarantine survey question: Have you isolated or quarantined 
yourself because of the Coronavirus? Yes/No

▪ Quarantine probe: When answering the previous question about 
isolating or quarantining because of the Coronavirus, what were 
you thinking about? (half the sample received (n=6,308), other half received a closed-ended 
version)

▪ Comparison with “source of truth”: human coding (July-September 2020)

• Sensitivity and specificity calculations



Quarantine probe: evaluation results

Coded NR Coded Valid

Model NR 848 288 1136

Model Valid 392 4768 5160

Total 1240 5056 6296

False valids (human-coded NR):
• “None” (61)
• “Quarantine” (10)

Sensitivity 68% (848/1240) Specificity 94% (4768/5056)

Key take-away: 
Model did a good job identifying 
“true” valids; less well identifying 
“true” item nonresponse

False NR (human-coded valid):
• “If I had symptoms” 

• “Did I need to quarantine because of 
a possibility of Coronavirus” 

• “If I was knowingly exposed to the 
virus”

• Almost all “other, high risk”



Pandemic time reference probe

▪ The probes:

• 1. When do you think that the Coronavirus pandemic began? Your best guess 
is fine.

• 2. When did the Coronavirus pandemic first affect your daily life? Your best 
guess is fine.

• 3. Why do you say that? (n=12,662)

▪ Different “source of truth”; hand-review but not full coding

▪ Full review of model-identified nonresponse (n=1,619); random sample 
(n=1,000) of valids

• “Implied” sensitivity and specificity calculations



Pandemic time reference probe: evaluation results

Coded NR Coded Valid Total

Model NR 1372 247 1619

Model Valid
199

= (18/1000)*11043
10844

= (982/1000)*11043)
11043

Total 1571 11091 12662

False valids (human-coded NR):
• “None”
• “Because it just doesn’t”
• “I’m fine”
• “Best guess”
• “You asked”

Sensitivity 87% (1372/1571), 
95% CI [83% , 93%]

Specificity 98% (10844/11091), 
95% CI [98% , 98%]

False NR (human-coded valid):
• “because i sdyaty jhome”

• Almost all “other, high risk”

Key take-away:
Model did a good job identifying “true” 
valids; slightly less well identifying 
“true” item nonresponse



Discussion/next steps



Discussion/next steps

▪ Evaluation results show promise for our semi-automated item 
nonresponse detection model

▪ Next steps:

• Further evaluation on additional open-text data on wider range of topics

• Analysis to better understand the types and patterns of item nonresponse 
and possible subgroup differences

• Work toward release of a generalized model (possibly web-based) to share 
with others



For more information, contact CDC
1-800-CDC-INFO (232-4636)
TTY:  1-888-232-6348    www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the 
official position of the Centers for Disease Control and Prevention.
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For more information contact:  Amanda Wilmot awlimot@cdc.gov

Q-Bank: providing access to survey question evaluation reports, question 
design and performance https://wwwn.cdc.gov/qbank/

Q-Notes: designed to facilitate the management and analysis of cognitive 
interviews https://www.cdc.gov/nchs/ccqder/products/qnotes.htm
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