Universal Adaptability: A New Method to Draw Inference from Non-Probability Surveys and Other Data Sources

Christoph Kern

School of Social Sciences, University of Mannheim

AAPOR 2022

(日) (四) (里) (里)

1

Kim, M. P., Kern, C., Goldwasser, S., Kreuter, F. and Reingold, O. (2022). Universal Adaptability: Target-Independent Inference that Competes with Propensity Scoring. *Proceedings of the National Academy of Sciences of the United States of America (PNAS)* 119(4). https://doi.org/10.1073/pnas.2108097119.

◆□▶ ◆舂▶ ★逹▶ ★逹▶ 三臣……

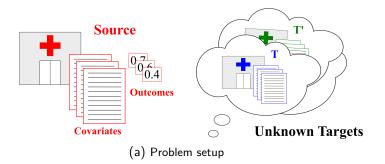


Figure: Inference task and universal adaptability via multi-calibration

< ロト < 部ト < ミト < ミト

1

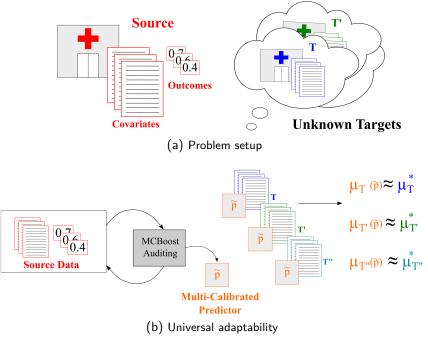


Figure: Inference task and universal adaptability via multi-calibration

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 聖

Setting and Notation

 $\begin{array}{c|c} \underline{\text{Source distribution } (\mathcal{D}_s)} \\ \hline \underline{\text{Covariates } X, \text{ outcome } Y} \end{array} & \boxed{ \begin{array}{c} \text{Target distribution } (\mathcal{D}_t) \\ \hline \text{Covariates } X \end{array} \\ \hline \\ \hline \\ \text{Sampling in source vs. target: } Z \in \{s, t\} \\ \hline \\ \text{Inference task: } \mu_t^* = E_{(X,Y)\sim\mathcal{D}_t} \begin{bmatrix} Y \end{bmatrix} \\ \hline \\ \\ \text{Estimation error: } \operatorname{er}_t(\tilde{\mu}) = \left| \begin{array}{c} \tilde{\mu} - \mu_t^* \end{array} \right| \end{array} } \end{array} }$

Propensity score: $e_{st}(x) = P \left[Z = s, X = x \right]$ Class of propensity scoring functions: Σ Best-fit propensity score: $\sigma_{st}^* \in \Sigma$ Propensity odds ratio: $c_{\sigma}(x) = \frac{1-\sigma(x)}{\sigma(x)}$ Class of propensity odds ratios: $C(\Sigma)$

Key Challenge

Single source \rightarrow many different targets!

- Challenge: Reweighting for every target is costly
- Goal: Provide insights in a "universal" format

Target-Specific Inference e.g., propensity scoring	Target-Independent Inference
Training Time:	Training Time:
unlabeled samples from <i>s</i> , <i>t</i>	labeled samples from <i>s</i>
Evaluation Time:	Evaluation Time:
labeled samples from <i>s</i>	unlabeled samples from <i>t</i>

Imputation (e.g., Chen et al. 2020)

Given a predictor $p:\mathcal{X}
ightarrow$ [0,1], estimate E [Y|Z=t] as

 $\hat{\mu}_t(p) = E\left[p(X) | Z = t \right]$

- (1) Learn an outcome predictor $p: \mathcal{X} \to \mathcal{Y}$ from source data
- ② Average the "imputed" value in target distribution

Predictor trained on source may give bad predictions on target!

Definition (Multi-Calibration)

For a given distribution \mathcal{D} and class of functions \mathcal{C} , a predictor $\tilde{p}: \mathcal{X} \to [0, 1]$ is (\mathcal{C}, α) -multi-calibrated if

$$E_{(X,Y)\sim\mathcal{D}}[c(X)\cdot(Y-\tilde{p}(X))] \leq \alpha.$$

- Multi-calibration (Hebert-Johnson et al., 2018; Kim et al., 2019) ensures that predictions are unbiased across every (weighted) subpopulation defined by $c \in C$
- We derive a direct correspondence between protecting many subpopulations from **miscalibration** and ensuring **unbiased estimates** over a vast collection of target populations

Definition (Universal Adaptability)

For a source distribution \mathcal{D}_s and a class of propensity scores Σ , a predictor $\tilde{p} : \mathcal{X} \to [0, 1]$ is (Σ, β) -universally adaptable if for any target distribution \mathcal{D}_t

 $\operatorname{er}_{\operatorname{t}}(\mu_{\operatorname{t}}(\tilde{\boldsymbol{p}})) \leq \operatorname{er}_{\operatorname{t}}(\mu_{\operatorname{t}}^{\operatorname{ps}}(\sigma_{\operatorname{st}}^{*})) + \beta$

Theorem

Suppose $\tilde{p} : \mathcal{X} \to [0, 1]$ is a $(\mathcal{C}(\Sigma), \alpha)$ -multi-calibrated prediction function over source distribution \mathcal{D}_s . Then, for any target distribution \mathcal{D}_t , and for any $\sigma \in \Sigma$, the estimator $\mu_t(\tilde{p})$ is $(\Sigma, \alpha + \Delta_{st}(\sigma))$ -universally-adaptable.

MCBoost

Given:

- Initial predictor \tilde{p}
- Validation data D
- An auditor to search for subpopulations c
 - find largest residuals
 - e.g. ridge regression, decision tree

Repeat:

• Search over $c \in C$

• If
$$|E_{x\sim D}[c(x) \cdot (y - \tilde{p}(x))]| > \alpha$$

- update as $ilde{p}(x) \leftarrow ilde{p}(x) - \eta \cdot c(x)$

R package on CRAN (Pfisterer et al., 2021) - https://github.com/mlr-org/mcboost

o Data

- Source: unweighted NHANES III
- Target: weighted NHIS
- Linked to death certificates records (NDI)

• Analytical Statistic

Estimate of 15-year all-cause mortality rate, by subpopulation

Inference Methods

- IPSW-Overall: Reweighting with global propensity scores
- IPSW-Subgroup: Reweighting with subgroup-specific propensity scores

(日) (部) (注) (注) (注)

- RF-Naive: Mortality prediction with random forest
- RF-MCBoost: Mortality prediction with multi-calibrated RF

Application Results

	IPSW		RF	
	Overall	Subgroup	Naive	MC-Boost
Overall	2.37 (13.5%)		1.11 (6.3%)	0.52 (3.0%)
Male	2.51 (13.4)	0.91 (4.9)	-0.34 (1.8)	0.11 (0.6)
Female	2.40 (14.6)	3.99 (24.2)	2.43 (14.8)	0.90 (5.4)
Age 18-24	0.00 (0.1)	-0.39 (17.5)	6.03 (270.2)	1.76 (79.0)
Age 25-44	-0.20 (5.2)	-0.41 (10.6)	0.82 (21.2)	0.66 (17.2)
Age 45-64	-0.75 (4.2)	-0.41 (2.3)	0.86 (4.8)	-0.29 (1.6)
Age 65-69	-4.23 (9.3)	-5.23 (11.5)	-3.52 (7.7)	-1.99 (4.4)
Age 70-74	-1.36 (2.3)	0.47 (0.8)	-3.02 (5.0)	0.61 (1.0)
Age 75 $+$	3.53 (4.1)	2.85 (3.3)	0.51 (0.6)	2.19 (2.5)
White	3.53 (18.9)	0.75 (4.0)	1.03 (5.5)	0.69 (3.7)
Black	-4.00 (21.1)	-0.48 (2.5)	-0.66 (3.5)	-0.52 (2.7)
Hispanic	1.73 (17.0)	0.48 (4.7)	2.91 (28.6)	1.55 (15.2)
Other	-0.02 (0.2)	-3.54 (39.5)	3.52 (39.3)	-2.06 (23.0)

Table: Estimation error in inferred mortality rate (% error in parentheses)

Semi-synthetic Simulation

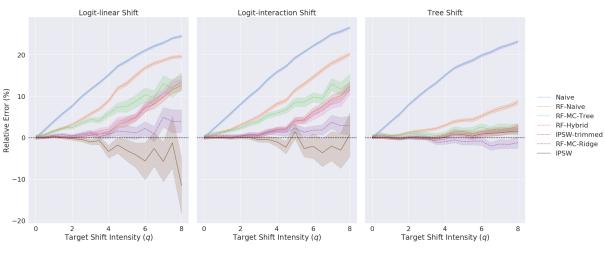


Figure: Relative error in inferred voting rates under synthetic shift

• Universal Adaptability

Valid inferences across a rich class of targets

General Result

Multicalibration persists under covariate shift

Meta-Takeaway

Algorithmic fairness useful beyond "fairness"

Thanks!

c.kern@uni-mannheim.de

- Chen, S., Yang, S., and Kim, J. K. (2020). Nonparametric Mass Imputation for Data Integration. *Journal of Survey Statistics and Methodology*, 10(1):1–24.
- Hebert-Johnson, U., Kim, M. P., Reingold, O., and Rothblum, G. (2018). Multicalibration: Calibration for the (computationally-identifiable) masses. In *Proceedings of the 35th International Conference on Machine Learning*, *PMLR 80*, pages 1939–1948.
- Kim, M. P., Ghorbani, A., and Zou, J. (2019). Multiaccuracy: Black-box post-processing for fairness in classification. In *Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES* 19), pages 247–254. Association for Computing Machinery.

▲ロト ▲暦ト ▲ヨト ▲目 ● ○○○

Pfisterer, F., Kern, C., Dandl, S., Sun, M., Kim, M. P., and Bischl, B. (2021). mcboost: Multi-Calibration Boosting for R. *Journal of Open Source Software*, 6(64).