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Setting and Notation

Source distribution (Ds) Target distribution (Dt)
Covariates X , outcome Y Covariates X︸ ︷︷ ︸

Sampling in source vs. target: Z ∈ {s, t}
Inference task: µ∗t = E(X ,Y )∼Dt [ Y ]
Estimation error: ert(µ̃) = | µ̃− µ∗t |

Propensity score: est(x) = P [ Z = s,X = x ]
Class of propensity scoring functions: Σ
Best-fit propensity score: σ∗st ∈ Σ
Propensity odds ratio: cσ(x) = 1−σ(x)

σ(x)
Class of propensity odds ratios: C(Σ)



Key Challenge

Single source → many different targets!
Challenge: Reweighting for every target is costly
Goal: Provide insights in a “universal” format

Target-Specific Inference Target-Independent Inference
e.g., propensity scoring
Training Time: Training Time:
unlabeled samples from s, t labeled samples from s
Evaluation Time: Evaluation Time:
labeled samples from s unlabeled samples from t



Target-Independent Inference?

Imputation (e.g., Chen et al. 2020)
Given a predictor p : X → [ 0, 1 ], estimate E [ Y |Z = t ] as

µ̂t(p) = E [ p(X )|Z = t ]

1 Learn an outcome predictor p : X → Y from source data
2 Average the “imputed” value in target distribution

Predictor trained on source may give bad predictions on target!



Multi-Calibration

Definition (Multi-Calibration)
For a given distribution D and class of functions C, a predictor p̃ : X → [0, 1] is
(C, α)-multi-calibrated if ∣∣∣E (X ,Y )∼D [ c(X ) · (Y − p̃(X )) ]

∣∣∣ ≤ α.
Multi-calibration (Hebert-Johnson et al., 2018; Kim et al., 2019) ensures that predictions
are unbiased across every (weighted) subpopulation defined by c ∈ C
We derive a direct correspondence between protecting many subpopulations from
miscalibration and ensuring unbiased estimates over a vast collection of target
populations



Multi-Calibration guarantees Universal Adaptability

Definition (Universal Adaptability)
For a source distribution Ds and a class of propensity scores Σ, a predictor p̃ : X → [0, 1] is
(Σ, β)-universally adaptable if for any target distribution Dt

ert (µt(p̃)) ≤ ert (µps
t (σ∗st)) + β

Theorem
Suppose p̃ : X → [0, 1] is a (C(Σ) , α)-multi-calibrated prediction function over source
distribution Ds . Then, for any target distribution Dt , and for any σ ∈ Σ, the estimator µt(p̃)
is (Σ, α + ∆st(σ))-universally-adaptable.



MCBoost

Given:
Initial predictor p̃
Validation data D
An auditor to search for subpopulations c

find largest residuals
e.g. ridge regression, decision tree

Repeat:
Search over c ∈ C
If |Ex∼D[c(x) · (y − p̃(x))]| > α

- update as p̃(x)← p̃(x)− η · c(x)

R package on CRAN (Pfisterer et al., 2021) – https://github.com/mlr-org/mcboost

https://github.com/mlr-org/mcboost


Application Setup

Data
Source: unweighted NHANES III
Target: weighted NHIS
Linked to death certificates records (NDI)

Analytical Statistic
Estimate of 15-year all-cause mortality rate, by subpopulation
Inference Methods

IPSW-Overall: Reweighting with global propensity scores
IPSW-Subgroup: Reweighting with subgroup-specific propensity scores
RF-Naive: Mortality prediction with random forest
RF-MCBoost: Mortality prediction with multi-calibrated RF



Application Results

Table: Estimation error in inferred mortality rate (% error in parentheses)

IPSW RF
Overall Subgroup Naive MC-Boost

Overall 2.37 (13.5%) — 1.11 (6.3%) 0.52 (3.0%)
Male 2.51 (13.4) 0.91 (4.9) -0.34 (1.8) 0.11 (0.6)
Female 2.40 (14.6) 3.99 (24.2) 2.43 (14.8) 0.90 (5.4)
Age 18-24 0.00 (0.1) -0.39 (17.5) 6.03 (270.2) 1.76 (79.0)
Age 25-44 -0.20 (5.2) -0.41 (10.6) 0.82 (21.2) 0.66 (17.2)
Age 45-64 -0.75 (4.2) -0.41 (2.3) 0.86 (4.8) -0.29 (1.6)
Age 65-69 -4.23 (9.3) -5.23 (11.5) -3.52 (7.7) -1.99 (4.4)
Age 70-74 -1.36 (2.3) 0.47 (0.8) -3.02 (5.0) 0.61 (1.0)
Age 75+ 3.53 (4.1) 2.85 (3.3) 0.51 (0.6) 2.19 (2.5)
White 3.53 (18.9) 0.75 (4.0) 1.03 (5.5) 0.69 (3.7)
Black -4.00 (21.1) -0.48 (2.5) -0.66 (3.5) -0.52 (2.7)
Hispanic 1.73 (17.0) 0.48 (4.7) 2.91 (28.6) 1.55 (15.2)
Other -0.02 (0.2) -3.54 (39.5) 3.52 (39.3) -2.06 (23.0)



Semi-synthetic Simulation

Figure: Relative error in inferred voting rates under synthetic shift



Discussion

Universal Adaptability
Valid inferences across a rich class of targets
General Result
Multicalibration persists under covariate shift
Meta-Takeaway
Algorithmic fairness useful beyond “fairness”



Thanks!
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